Please wait a minute...
Acta Metall Sin  1964, Vol. 7 Issue (3): 263-280    DOI:
Current Issue | Archive | Adv Search |
TRANSPORT PROCESSES IN DILUTE-PHASE FLUIDIZATION AS APPLIED TO CHEMICAL METALLURGY Ⅰ. TRANSFER COEFFICIENT AND SYSTEM PRESSURE DROP AS CRITERIA FOR SELECTING DILUTE-PHASE OPERATIONS
MOOSON KWAUK; DIEN-WEI TAI(Institute of Chemical Metallurgy; Academia Sinica)
Cite this article: 

MOOSON KWAUK; DIEN-WEI TAI(Institute of Chemical Metallurgy; Academia Sinica). TRANSPORT PROCESSES IN DILUTE-PHASE FLUIDIZATION AS APPLIED TO CHEMICAL METALLURGY Ⅰ. TRANSFER COEFFICIENT AND SYSTEM PRESSURE DROP AS CRITERIA FOR SELECTING DILUTE-PHASE OPERATIONS. Acta Metall Sin, 1964, 7(3): 263-280.

Download:  PDF(1389KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In the application of fluidization to chemical metallurgy, many processes involve the transport of heat and mass both inside a particle and between the particle and the surrounding fluid. The term, mixed specific resistance, R′(R′=Nu′=hD_p/k_s and R′=Sh′=h_DD_P/D_s for heat and mass transfer, respectively), is proposed, through which, by means of the curve shown in Figure 2, it is possible to estimate the fraction of total resistance due to transfer inside the particle, thus permitting one to ascertain whether or not a given transport process can be effectively hastened by dilute-phase technique.The effectiveness of dilute-phase technique in accelerating transport processes is primarily due to the unique characteristics of its particle-fluid dynamics. After an analysis on the fixed bed, a single particle in a fluid, and the dense—and dilute—phase fluidized systems, the present paper points out that a differentiation should be made between the local transfer coefficient and an apparent value based on the entire system. For densephase fluidization with gases, for example, the latter may be lower than the former by 2—3 orders of magnitude. This tremendous disparity is mainly caused by the back-mixing of both the particles as a group and of the fluid, as well as by the heterogeneous nonuniformity characteristic of may a particle-fluid system. Based on the present analysis, which is duly supported by experimental evidence, it is shown that dilute-phase technique can be used effectively to reduce back-mixing and to suppress the heterogeneous nature in nonuniform velocity fronts, thus raising the values of apparent transfer coefficients to the range of the local coefficients of the idealized single particle model. From the point of view of system pressure drop, too, dilute-phase fluidization represents much lower power consumption than the corresponding fixed bed or dense-phase operation.
Received:  18 March 1964     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1964/V7/I3/263

[1] 王中礼:流态化技术中多孔板的初步研究,(中国科学院化工冶金研究所,1962年),8月11日.
[2] 王佩云:载流磁化焙烧小型实驗报告,(中国科学院化工冶金研究所,1961年),6月.
[3] 刘淑娟:从含銅鈷氧化铁矿中提取銅鈷,(中国科学院化工冶金研究所,1962年),6月.
[4] 沈德浩、原庆久:鉄矿石磁化还原沸騰焙烧工业試驗生产介紹,(鞍山黑色矿山設計院首届学术年会資料,1962年),11月.
[5] 郑建生、白万海:流态化磁化焙烧貧铁矿,(中国科学院化工冶金研究所,1962年),6月.
[6] 楊云奇:稀相布料,(中国科学院化工冶金研究所,1962年),7月6日.
[7] 郭慕孙:对于分布板的一些初步意見,(中国科学院化工冶金研究所,1959年),10月.
[8] 郭慕孙:对于稀相換热的一些初步意見,(中国科学院化工冶金研究所,1959年),11月12日.
[9] 郭慕孙:流态化讲解,(北京市化学化工学会讲座,1962年),11月27日,30日.
[10] 郭慕孙、庆一安:流态化--垂直系統中均匀球体和流体的运动,(科学出版社,1963年).
[11] 郭慕孙、杨紀珂:載流式过程(一些初步意見),(中国科学院化工冶金研究所,1961年)1月5日.
[12] 陶恩瑞、刘錫洹、姚忠吉:有色金属,1959,(3) ,10.
[13] 戴殿卫:稀相換热,(中国科学院化工冶金研究所,1962年),7月.
[14] 戴殿卫:稀相換热实驗,(中国科学院化工冶金研究所,1959年),9月21日.
[15] #12
[16] #12
[17] #12
[18] Bullard, Sir E.: Proc. Roy. Soc. (London), 1954, A222, 408.
[19] Cairns, E. J., Prausnitz, J. M.: A. I. Ch. E. J., 1960, 6, 400.
[20] Cavanagh, R. L., Last, A. J.: Can. Mining Met. Bull., 1961, 54, 615.
[21] Dalla Lana, I. G., Amundson, N. R.: Ind. Eng. Chem., 1961, 53, 22.
[22] Danckwerts, P. V.: Chem. Eng. Sci., 1953, 2, 1.
[23] Hanratty, T. J., Latinen, G., Wilhelm, R. H.: A. I. Ch. E. J., 1956, 2, 372.
[24] Harrison, D., Davidson, J. F., De Kock, J. W.: Trans. Inst. Chem. Engr., 1961, 39, 202.
[25] Heertjes, P. M., De Boer, H. G. J.: Chem. Eng. Sci., 1953, 2, 97.
[26] Kays, W. M., London, A. L.: Compact Heat Exchangers, (The National Press, 1955) , p. 25.
[27] Kettenring, K. N., Manderfield, E. L., Smith, J. M.: Chem. Eng. Progr., 1950, 46, 139.
[28] Kramers, H.: Physica, 1946, 12, 61.
[29] Kwauk, M.: A Note on Non-uniformity in Fluid-particle Systems, 未发表.
[30] Lanneau, K. P.: Trans. Inst. Chem. Engr., 1960, 38, 125.
[31] Lloyd, W. A., Amundson, N. R.: Ind. Eng. Chem., 1961, 53, 19.
[32] McCune, L. K., Wilhelm, R. H.: Ind. Eng. Chem., 1949, 41, 1124.
[33] Newman, A. B.: A. I. Ch. E. J., 1931, 27, 203.
[34] OEEC: The Mining and Dressing of Low-grade Ores, 1955, p. 91.
[35] Olsen, F. C. W., Schultz, O. T.: Ind. Eng. Chem., 1942, 34, 874.
[36] Priestley, R. J.: Ind. Eng. Chem., 1957, 49, 62.
[37] Priestly, R. J.: Blast Furnace Steel Plant, 1958. 46, 303.
[38] Richardson, J. F., Ayers, P.: Trans. Inst. Chem. Engr., 1959, 37, 314.
[39] Richardson, J. F., Bakhtiar, A. G.: Trans. Inst. Chem. Engr., 1958, 36, 283.
[40] Richardson, J. F., Szekely, J.: Trans. Inst. Chem. Engr., 1961, 39, 212.
[41] Sunkoori, N. R., Kaparthi, R.: Chem. Eng. Sci., 1960, 12, 166.
[42] Totzek, F.: Chem. Engr. Progr., 1954, 50, 182.
[43] Themelis, N. J., Gauvin, W. H.: A. I. Ch. E. J., 1962, 8, 437.
[44] Walton, J. S., Olson, R. L.: Ind. Eng. Chem., 1952, 44, 1474.
[45] Wamsley, W. W., Johanson, L. N.: Chem. Eng. Progr., 1954, 50, 347.
[46] Wehner, J. F., Wilhelm, R. H.: Chem. Eng. Sci., 1956, 6, 89.
No related articles found!
No Suggested Reading articles found!