Please wait a minute...
Acta Metall Sin  2026, Vol. 62 Issue (1): 81-99    DOI: 10.11900/0412.1961.2025.00202
Overview Current Issue | Archive | Adv Search |
Research Advances in Underwater Welding Technologies and Applications: A Review
WANG Zhenmin1, ZHUANG Jianpeng1, HE Zhiyu1, WANG Yuhai1, CHI Peng1, ZHANG Bin1, ZHANG Qin2, LIAO Haipeng3()
1 School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510641, China
2 School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China
3 School of Marine Science and Engineering, South China University of Technology, Guangzhou 511442, China
Cite this article: 

WANG Zhenmin, ZHUANG Jianpeng, HE Zhiyu, WANG Yuhai, CHI Peng, ZHANG Bin, ZHANG Qin, LIAO Haipeng. Research Advances in Underwater Welding Technologies and Applications: A Review. Acta Metall Sin, 2026, 62(1): 81-99.

Download:  HTML  PDF(5707KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Underwater welding technology plays a vital role in the emergency or permanent repair of underwater structures, particularly in high-end sectors such as shipping, offshore engineering, and nuclear power plants. This paper reviews the progress and challenges associated with underwater welding technology from three key perspectives: equipment development, process research, and engineering applications. Regarding equipment development, innovations such as high-performance welding power supplies, micro drainage hoods, intelligent wire feeding devices, and intelligent welding robots have significantly enhanced welding quality and efficiency. In terms of process research, the focus is on dynamic monitoring of the welding process, exploring microstructural evolution and mechanical properties, and clarifying the relationship between parameters such as heat input and microstructure. Combining these with quality optimisation methods can further enhance welding reliability and efficiency. Engineering application practices have demonstrated the significant value of underwater welding in nuclear power maintenance, ship repair, and offshore wind power restoration. Future research should drive underwater welding technology toward breakthroughs in high reliability, high efficiency, and autonomy, thereby providing critical technical support for the repair of large underwater structures.

Key words:  underwater welding      underwater structure      welding equipment      process method     
Received:  15 July 2025     
ZTFLH:  TG442  
Fund: National Natural Science Foundation of China(U23A20625);National Natural Science Foundation of China(U2141216);National Natural Science Foundation of China(52375334);National Key Research and Development Program of China(2023YFB3407703);Natural Science Foundation of Guangdong Province(2023B1515250003)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2025.00202     OR     https://www.ams.org.cn/EN/Y2026/V62/I1/81

Fig.1  1500-meter-deep pressure chamber
Fig.2  Schematics of wet underwater welding technology[14] (S—contact area, G—gravitational force, FL—flow drag force, α—angle between droplet and wire axis)
(a) wire and droplet under water
(b) gasflow interacting with droplet and bubble
(c) bubble rising in water around workpiece
Fig.3  Schematic of local dry welding[15]
Fig.4  Underwater high-power fast pulse welding power supply prototype and related waveform diagrams
(a) welding power supply prototype
(b) fast pulse principle diagram (Ib—secondary current, Im—principal current, ID—basic current)
Fig.5  Schematics of a micro drainage hood with a double air curtain structure[34]
(a) air inlet and sealed cap assembly
(b) overall structure of dual-air-curtain
(c) cross-sectional view of welding process
Fig.6  Schematic (a) and photograph (b) of lightweight fully sealed wire feeding device
Fig.7  Six-degree-of-freedom underwater welding robotic arm
Fig.8  Elevation welding test process of magnetic adsorption wheeled underwater welding robot[45] (a, c) welding site photographs at spatial attitude angles of 180° (a) and 270° (c) (b, d) welding process photographs at spatial attitude angles of 180° (b) and 270° (d)
Fig.9  Wheeled humanoid welding robot prototype
(a) robot model diagram (b) robot physical photograph
Fig.10  Electrical signal analyses during partial dry underwater welding[54] (a-e) current probability density figures and voltage-current figures (f) variation coefficients of current and voltage
Fig.11  Droplet transfer behavior at different peak pulse currents[60] (t0—welding commencement time)
(a) short circuit transfer process at the peak current of 240 A
(b) globular transfer process at the peak current of 260 A
(c) projected transfer process at the peak current of 280 A
(d) effect of momentum and impact force on weld penetration
Fig.12  Grain types of ferrite and austenite in weld metal at different simulated water depths[75]
(a-h) grain structures of ferrite (a-d) and austenite (e-h) under different simulated water depths of 0.1 m (a, e), 15 m (b, f), 45 m (c, g), and 75 m (d, h) (i, j) histograms of the fraction of different grain types of the ferrite (i) and austenite (j)
Fig.13  Influence mechanism of single/double pulsed waveforms on grain growth during the local dry underwater wire arc additive manufacturing (LDU-WAAM) deposition process[81]
(a1-a8) schematics of stirring mechanism on grain development (b1-b3, c1-c3) schematics of grain growth in each layer deposited by single pulsed waveform (SPW) (b1-b3) and double pulsed waveform (DPW) (c1-c3)
Fig.14  Weld formation and dimensions (unit: mm) at different peak currents[60]
(a) 240 A (b) 260 A (c) 280 A (d) 300 A (e) 320 A
Fig.15  Macroscopic morphologies of welds at a water depth of 120 m[94] (a, b) forming (a) and cross-section (b) of overlay welds (c, d) forming (a) and cross-section (b) of butt welds
Fig.16  Local dry underwater laser welded parts under different laser line energies[98]
(a) morphology (Green cycles show the slight incomplete fusion at the edge of WM; red rectangles show the spatters and burn-through holes likely emerged)
(b) defects (c, d) effect of power (c) and speed (d) on dimensions
[1] Zhou L, Liu Y B, Guo N, et al. Development status of underwater welding technology [J]. Electr. Weld. Mach., 2012, 42(11): 6
周 利, 刘一搏, 郭 宁 等. 水下焊接技术的研究发展现状 [J]. 电焊机, 2012, 42(11): 6
[2] Łabanowski J. Development of under-water welding techniques [J]. Weld. Int., 2011, 25: 933
[3] Wu L, Song H W. The current situation and development trend of underwater welding [J]. Pipeline Technol. Equip., 2012, (2): 37
吴 磊, 宋红伟. 水下焊接技术的现状及发展趋势 [J]. 管道技术与设备, 2012, (2): 37
[4] Wang Z H, Zhang D D. Research status of hyperbaric welding test chamber [J]. Weld. Pipe Tube, 2012, 35(5): 50
王中辉, 张东东. 高压焊接试验舱研究现状 [J]. 焊管, 2012, 35(5): 50
[5] Han F Q, Li Z Z, Sun L M, et al. Research on underwater wet manual SHS welding [J]. Trans. China Weld. Inst., 2019, 40(7): 149
韩凤起, 李志尊, 孙立明 等. 水下湿法手工自蔓延焊接技术 [J]. 焊接学报, 2019, 40(7): 149
[6] Hou R L. Research on the design and key technology of local dry welding device [D]. Daqing: Northeast Petroleum University, 2022
侯瑞麟. 局部干法焊接装置设计及其关键技术研究 [D]. 大庆: 东北石油大学, 2022
[7] Wang Z H, Qi B J, Jiang L P, et al. Development state of hyperbaric underwater welding technology [J]. Weld. Joining, 2008, (10): 5
王中辉, 齐柏金, 蒋力培 等. 高压干法水下焊接技术发展现状 [J]. 焊接, 2008, (10): 5
[8] Li K. Research on arc behavior and droplet transfer of dry hyperbaric GMAW [D]. Harbin: Harbin Institute of Technology, 2014
李 凯. 高压干法GMAW电弧行为及熔滴过渡研究 [D]. 哈尔滨: 哈尔滨工业大学, 2014
[9] Zhang Y M. The research on welding process of pulsed GMAW in dry high pressure environment [D]. Beijing: Beijing Institute of Petrochemical Technology, 2016
张永明. 干式高气压环境下脉冲GMAW焊接工艺研究 [D]. 北京: 北京石油化工学院, 2016
[10] Tomków J, Łabanowski J, Fydrych D, et al. Cold cracking of S460N steel welded in water environment [J]. Pol. Marit. Res., 2018, 25: 131
[11] Rowe M, Liu S. Recent developments in underwater wet welding [J]. Sci. Technol. Weld. Join., 2001, 6: 387
[12] Zhao B, Wu C S, Jia C B, et al. Numerical analysis of the weld bead profiles in underwater wet flux-cored arc welding [J]. Acta Metall. Sin., 2013, 49: 797
赵 博, 武传松, 贾传宝 等. 水下湿法fcaw焊缝成形的数值分析 [J]. 金属学报, 2013, 49: 797
[13] Świerczyńska A, Fydrych D, Rogalski G. Diffusible hydrogen management in underwater wet self-shielded flux cored arc welding [J]. Int. J. Hydrogen Energy, 2017, 42: 24532
[14] Chen H, Guo N, Huang L, et al. Effects of arc bubble behaviors and characteristics on droplet transfer in underwater wet welding using in-situ imaging method [J]. Mater. Des., 2019, 170: 107696
[15] Zhang X D, Ashida E, Shono S, et al. Effect of shielding conditions of local dry cavity on weld quality in underwater Nd:YAG laser welding [J]. J. Mater. Process. Technol., 2006, 174: 34
[16] Katayama S, Yohei A, Mizutani M, et al. Development of deep penetration welding technology with high brightness laser under vacuum [J]. Phys. Procedia, 2011, 12: 75
[17] Wang Z M, Hu J L, Jia J J, et al. Effect of frequency on welding stability, microstructure, and mechanical performance of SUS304 welded by local dry underwater fast-frequency pulsed MIG [J]. J. Manuf. Process., 2025, 133: 1051
[18] Suga Y, Hasui A. On arc welding in high pressure argon atmosphere [J]. Quart. J. Jpn. Weld. Soc., 1986, 4: 691
[19] Chen X Q, Du J B, Du Y P, et al. Research status of the influence of water environment on underwater welding process [J]. Weld. Technol., 2021, 50(5): 39
陈晓强, 都景彬, 杜永鹏 等. 水环境对水下焊接过程影响研究现状 [J]. 焊接技术, 2021, 50(5): 39
[20] Wang G R, Yang Q M. Spectral diagnostics of temperature of underwater welding arc [J]. J. South China Univ. Technol. (Nat. Sci.), 1997, 25(2): 8
王国荣, 杨乾铭. 水下焊接电弧温度的光谱诊断 [J]. 华南理工大学学报(自然科学版), 1997, 25(2): 8
[21] Han L G, Zhong Q M, Chen G D, et al. Development of local dry underwater welding technology [J]. J. Zhejiang Univ. Technol. (Eng. Sci.), 2019, 53: 1252
韩雷刚, 钟启明, 陈国栋 等. 局部干法水下焊接技术的发展 [J]. 浙江大学学报(工学版), 2019, 53: 1252
[22] Jia C B, Zhang T, Maksimov S Y, et al. Spectroscopic analysis of the arc plasma of underwater wet flux-cored arc welding [J]. J. Mater. Process. Technol., 2013, 213: 1370
[23] Liao H P, Wang Z M, Chi P, et al. Evolutions of microstructure and mechanical property of 308L stainless steel repaired by the local dry underwater wire arc additive manufacturing [J]. Mater. Sci. Eng., 2024, A898: 146365
[24] Vashishtha P, Wattal R, Pandey S, et al. Problems encountered in underwater welding and remedies—A review [J]. Mater. Today Proc., 2022, 64: 1433
[25] Zheng Z P. The research of underwater wet FCAW arc stability and weld forming quality [D]. Guangzhou: South China University of Technology, 2013
郑泽培. 水下湿法FCAW电弧稳定性及焊缝成形质量的研究 [D]. 广州: 华南理工大学, 2013
[26] Wang C J. Research on the arc shape under high air ambient pressure [D]. Beijing: Beijing University of Chemical Technology, 2011
王春健. 高压环境下焊接电弧形态研究 [D]. 北京: 北京化工大学, 2011
[27] Feng Y L. Research on local dry underwater robotic welding power supply for nuclear fuel pool [D]. Guangzhou: South China University of Technology, 2016
冯允樑. 核乏燃料池水下局部干法机器人焊接电源的研究 [D]. 广州: 华南理工大学, 2016
[28] Yoder M N. Wide bandgap semiconductor materials and devices [J]. IEEE Trans. Electron Dev., 1996, 43: 1633
[29] Wang S G, Zhang Y. Application and development of SiC materials and devices [J]. China J. Nat., 2011, 33: 42
王守国, 张 岩. SiC材料及器件的应用发展前景 [J]. 自然杂志, 2011, 33: 42
[30] Xie F X. Research on local dry underwater robot welding power supply based on SiC power devices [D]. Guangzhou: South China University of Technology, 2018
谢芳祥. 基于SiC的水下机器人局部干法焊接电源研究 [D]. 广州: 华南理工大学, 2018
[31] Kuang X C, Qi B J, Zheng H. Effect of pulse mode and frequency on microstructure and properties of 2219 aluminum alloy by ultrahigh-frequency pulse metal-inert gas welding [J]. J. Mater. Res. Technol., 2022, 20: 3391
[32] Wang Z M, Jia J J, Hu J L, et al. Research on local dry underwater fast-frequency pulsed MIG welding power supply [J]. Trans. China Weld. Inst., 2024, 45(4): 13
王振民, 贾建军, 胡健良 等. 局部干法水下快频脉冲MIG焊电源研制 [J]. 焊接学报, 2024, 45(4): 13
[33] Yao Q, Luo Z, Li Y, et al. Weld forming and mechanical property of stainless steel underwater laser welding [J]. J. Shanghai Jiaotong Univ., 2015, 49: 333
姚 杞, 罗 震, 李 洋 等. 不锈钢水下激光焊接焊缝成形与力学性能 [J]. 上海交通大学学报, 2015, 49: 333
[34] Han L G, Wu X M, Chen G D, et al. Local dry underwater welding of 304 stainless steel based on a microdrain cover [J]. J. Mater. Process. Technol., 2019, 268: 47
[35] Hou R L, Wang Y, Gao S, et al. Development of local dry underwater welding device [J]. Hot Work. Technol., 2024, 53(7): 76
侯瑞麟, 王 妍, 高 胜 等. 局部干法水下焊接装置的研制 [J]. 热加工工艺, 2024, 53(7): 76
[36] Zhang W X, Guo S J, Wang Z M, et al. Small-size local dry method underwater laser welding drainage device and drainage method thereof [P]. Chin Pat, CN202311034937.6, 2023
张文旭, 郭世杰, 王振民 等. 一种小尺寸局部干法水下激光焊接排水装置及其排水方法 [P]. 中国专利, CN202311034937.6, 2023))
[37] Guo N, Fu Y L, Xing X, et al. Underwater local dry cavity laser welding of 304 stainless steel [J]. J. Mater. Process. Technol., 2018, 260: 146
[38] Wang Z M, Feng R J, Feng Y L, et al. Development of an intelligent wire feeder for underwater welding robot [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2014, 42(11): 1
王振民, 冯锐杰, 冯允樑 等. 水下焊接机器人智能潜水送丝系统的研制 [J]. 华南理工大学学报(自然科学版), 2014, 42(11): 1
[39] Han L G, Fan W Y, Wang G H, et al. Development of lightweight all-sealed wire feeder for underwater robotic welding system [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2018, 46(5): 135
韩雷刚, 范文艳, 王国河 等. 水下焊接机器人系统轻量化全密封送丝装置的研制 [J]. 华南理工大学学报(自然科学版), 2018, 46(5): 135
[40] Wang Z M, Zan J H, Xie W P, et al. Quick reloading type full-digital wire feeder for underwater complex working conditions [P]. Chin Pat, CN202311854086.X, 2023
王振民, 詹金桦, 谢文鹏 等. 快速换装式水下复杂工况用全数字化送丝机 [P]. 中国专利, CN202311854086.X, 2023)
[41] Zhang N, Wang H D, Li M, et al. Multiple observer based adaptive neural network anti-disturbance control of UVMS [J]. Control Eng. China, 2021, 28: 2143
张 宁, 王红都, 黎 明 等. 基于多观测器的UVMS自适应神经网络抗扰控制 [J]. 控制工程, 2021, 28: 2143
[42] Tian J X. Research on the coordinated control method of underwater welding manipulator [D]. Shenyang: Shenyang University, 2024
田金鑫. 水下焊接机械臂协调控制方法研究 [D]. 沈阳: 沈阳大学, 2024.
[43] Pan Z W, Guo C H, Jia R H, et al. Design and verification of active/passive compliant control system for underwater hydraulic manipulator [J]. Chin. Hydraul. Pneumat., 2024, 48(10): 65
潘志文, 郭昌鸿, 贾睿亨 等. 水下液压机械臂主被动柔顺控制系统设计与验证 [J]. 液压与气动, 2024, 48(10): 65
[44] Chen H B, Chen S B. Key information perception and control strategy of intellignet welding under complex scene [J]. Acta Metall. Sin., 2022, 58: 541
陈华斌, 陈善本. 复杂场景下的焊接智能制造中的信息感知与控制方法 [J]. 金属学报, 2022, 58: 541
[45] Luo B D. Development of magnetic adsorption wheeled underwater welding robot system [D]. Guangzhou: South China University of Technology, 2023
罗犇德. 磁吸附轮式水下焊接机器人系统研制 [D]. 广州: 华南理工大学, 2023
[46] Wang Z M, Zhu B, Chi P, et al. Modeling and verification of the magnetic wheel adsorption force in multiple working conditions for underwater welding robots [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2025, 53(9): 86
王振民, 朱 彬, 迟 鹏 等. 水下焊接机器人磁轮吸附力多工况建模与验证 [J]. 华南理工大学学报(自然科学版), 2025, 53(9): 86
[47] Tao Y, Wan J H, Wang T M, et al. Establishing a new paradigm of embodied intelligence: A review of the current status and development trends in humanoid robot technology [J]. J. Mech. Eng., 61(15): 121
陶 永, 万嘉昊, 王田苗 等. 构建具身智能新范式: 人形机器人技术现状及发展趋势综述 [J]. 机械工程学报. 61(15): 121
[48] Wang Z M, Song Z L, Chi P, et al. Research status and prospect of humanoid robot welding technology [J]. Mech. Electr. Eng. Technol., 2025, 54(4): 1
王振民, 宋哲龙, 迟 鹏 等. 类人机器人焊接技术研究现状与展望 [J]. 机电工程技术, 2025, 54(4): 1
[49] Chi P, Wang Z M, Liao H P, et al. An integrated calibration and 3D reconstruction method for humanoid welding robots [J]. Measurement, 2025, 253: 117748
[50] Wang J F, Sun Q J, Zhang S, et al. Characterization of the underwater welding arc bubble through a visual sensing method [J]. J. Mater. Process. Technol., 2018, 251: 95
[51] Zhao B, Chen J, Wu C S, et al. Numerical simulation of bubble and arc dynamics during underwater wet flux-cored arc welding [J]. J. Manuf. Process., 2020, 59: 167
[52] Yang Q S, Dong Y X, Zhang R P, et al. Effects of spatial welding positions on arc bubble behavior, droplet transfer process, and weld microstructure and properties in underwater wet welding [J]. J. Manuf. Process., 2025, 135: 46
[53] Cui X F, Chen J, Shi L, et al. Investigating the effect of hydrostatic pressure on arc and bubble transport phenomenon in underwater wet self-shielded flux cored arc welding [J]. Appl. Therm. Eng., 2024, 257: 124279
[54] Liao H P, Zhang W M, Xie H M, et al. Effects of welding speed on welding process stability, microstructure and mechanical performance of SUS304 welded by local dry underwater pulsed MIG [J]. J. Manuf. Process., 2023, 88: 84
[55] Chen M A, Wu C S, Lian R. Numerical analysis of dynamic process of metal transfer in GMAW [J]. Acta Metall. Sin., 2004, 40: 1227
陈茂爱, 武传松, 廉 荣. GMAW焊接熔滴过渡动态过程的数值分析 [J]. 金属学报, 2004, 40: 1227
[56] Wu C S, Dorn L. The influence of droplet impact on metal inert gas weld pool geometry [J]. Acta Metall. Sin., 1997, 33: 774
武传松, Dorn L. 熔滴冲击力对MIG焊接熔池表面形状的影响 [J]. 金属学报, 1997, 33: 774
[57] Huang J Q, Xue L, Huang J F, et al. Arc behavior and joints performance of CMT welding process in hyperbaric atmosphere [J]. Acta Metall. Sin., 2016, 52: 93
黄继强, 薛 龙, 黄军芬 等. 高压环境下CMT焊接电弧行为及焊缝性能 [J]. 金属学报, 2016, 52: 93
[58] Zhao H X. Research on characteristic of hyperbaric welding arc and behavior of droplet transfer [D]. Beijing: Beijing University of Chemical Technology, 2010
赵华夏. 高压环境焊接电弧特性及熔滴过渡行为研究 [D]. 北京: 北京化工大学, 2010
[59] Zhang Y, Jia C B, Zhao B, et al. Heat input and metal transfer influences on the weld geometry and microstructure during underwater wet FCAW [J]. J. Mater. Process. Technol., 2016, 238: 373
[60] Liao H P, Zhang W X, Li X Y, et al. Effect of pulse current on droplet transfer behavior and weld formation of 304 stainless steel in local dry underwater pulse MIG welding [J]. Int. J. Adv. Manuf. Technol., 2022, 122: 869
[61] Fu Y L, Guo N, Du Y P, et al. Effect of metal transfer mode on spatter and arc stability in underwater flux-cored wire wet welding [J]. J. Manuf. Process., 2018, 35: 161
[62] Yang J, Xu S C, Jia C B, et al. Numerical analysis of arc parameters and droplet behaviors for underwater flux-cored arc welding [J]. Int. J. Therm. Sci., 2023, 194: 108601
[63] Yuan T, Zhao X H, Jiang X Q, et al. Mechanism of grain refinement of pulse current assisted plasma arc welded Al-Mg alloy [J]. Acta Metall. Sin., 2024, 60: 323
袁 涛, 赵晓虎, 蒋晓青 等. 脉冲电流辅助等离子弧焊Al-Mg合金晶粒细化机理 [J]. 金属学报, 2024, 60: 323
[64] Wang B S, Xu G, Ren R, et al. Effect of electropulse on dynamic precipitation and microstructure of AZ91 magnesium alloy during warm extrusion [J]. Acta Metall. Sin., 2025, 61: 129
王彬杉, 徐 光, 任 睿 等. 脉冲电流对AZ91镁合金温挤压过程中动态析出和微观组织的影响 [J]. 金属学报, 2025, 61: 129
[65] Sun J S, Wu C S, Li Y J. Effect of welding heat input on microstructures and hardness in the haz of HQ130 steel [J]. Acta Metall. Sin., 1999, 35: 999
孙俊生, 武传松, 李亚江. 焊接热输入对HQ130钢焊接热影响区组织硬度的影响 [J]. 金属学报, 1999, 35: 999
[66] Ji H, Deng Y L, Xu H Y, et al. The influence of welding line energy on the microstructure and property of CMT overlap joint of 5182-O and HC260YD+Z [J]. Acta Metall. Sin., 2019, 55: 376
吉 华, 邓运来, 徐红勇 等. 焊接线能量对5182-O/HC260YD+Z异种材料CMT搭接接头组织与性能的影响 [J]. 金属学报, 2019, 55: 376
[67] Song F Y, Li Y M, Wang P, et al. Effects of heat input on the microstructure and impact toughness of weld metal processed by a new fluxnovel flux cored wire weld [J]. Acta Metall. Sin., 2016, 52: 890
宋峰雨, 李艳梅, 王 平 等. 热输入量对一种新型药芯焊丝熔敷金属组织及冲击韧性的影响 [J]. 金属学报, 2016, 52: 890
[68] Hu C Y, Li H L, Liu X Q, et al. Investigation on microstructure and properties of the local dry underwater TIG welding of 304L stainless steel [J]. Mater. Today Commun., 2025, 44: 111978
[69] Liao H P, Wang Z M, Zhang B, et al. Microstructure and mechanical properties of SUS304 weldments manufactured by ultrasonic vibration assisted local dry underwater welding [J]. J. Mater. Process. Technol., 2023, 322: 118183
[70] Sun K, Zeng M, Shi Y H, et al. Microstructure and corrosion behavior of S32101 stainless steel underwater dry and wet welded joints [J]. J. Mater. Process. Technol., 2018, 256: 190
[71] Fu Y L, Guo N, Zhu B H, et al. Microstructure and properties of underwater laser welding of TC4 titanium alloy [J]. J. Mater. Process. Technol., 2020, 275: 116372
[72] Song Y S, Liu R, Cui Y, et al. Stress corrosion behavior of Ni-Cr-Mo-V steel in 3.5%NaCl solution under the interaction of hydrostatic pressure and tensile stress [J]. Acta Metall. Sin., 2025, 61: 309
宋昱杉, 刘 叡, 崔 宇 等. 静水压力和拉伸应力交互作用下Ni-Cr-Mo-V钢在3.5%NaCl溶液中的应力腐蚀行为 [J]. 金属学报, 2025, 61: 309
[73] Ke W C, Liu Y, Teshome F B, et al. Numerical study on multiphase evolution and molten pool dynamics of underwater wet laser welding in shallow water environment [J]. Int. J. Heat Mass Transfer, 2024, 220: 124976
[74] You J Y, Li Z Y, Zhu J L, et al. Underwater wet laser welding of duplex stainless steel under various water depths [J]. Mater. Sci. Eng., 2024, A891: 145930
[75] Hu Y, Shi Y H, Sun K, et al. Microstructure evolution and mechanical performance of underwater local dry welded DSS metals at various simulated water depths [J]. J. Mater. Process. Technol., 2019, 264: 366
[76] Huo W J, Du Y P, Guo N, et al. Study on welding quality assessment method of underwater welding for emergency repair of warship [J]. Hot Work. Technol., 2018, 47(23): 178
霍文军, 杜永鹏, 郭 宁 等. 舰艇应急抢修用水下焊接质量评估方法研究 [J]. 热加工工艺, 2018, 47(23): 178
[77] Ji X D, Cheng T Y, Hua L, et al. Research on detection method of underwater welding quality based on acoustic signal recognition [J]. Chin. J. Eng. Des., 2023, 30: 562
纪晓东, 程天宇, 华 亮 等. 基于声信号识别的水下焊接质量检测方法研究 [J]. 工程设计学报, 2023, 30: 562
[78] Li K. Research on data-driven underwater welding quality classification model [D]. Wuhan: Huazhong University of Science and Technology, 2023
李 康. 基于数据驱动的水下焊接质量分类模型研究 [D]. 武汉: 华中科技大学, 2023
[79] Liu M Q, Wang X G, Mi D, et al. A new fatigue life prediction method for welded joints based on machine learning incorporating defect information and physics of failure [J]. Int. J. Fatigue, 2026, 202: 109234
[80] Bai Y T, Xie C, Zhou X H. AI-based macro model learning for high cycle fatigue assessment of welded joints in large-span steel structures [J]. Int. J. Fatigue, 2024, 184: 108321
[81] Liao H P, Wang Z M, Chi P, et al. Double pulsed current adopted in local dry underwater WAAM to simultaneously enhanced strength and ductility of 308 L multi-layer component [J]. J. Manuf. Process., 2024, 118: 389
[82] Cui X F, Chen J, Zheng T, et al. Experimental and simulation research on the dynamic behavior of arc and bubble in ultrasonic frequency pulse current-assisted underwater wet flux cored arc welding [J]. Int. J. Heat Mass Transfer, 2025, 242: 126853
[83] Chen J, Wen Z, Jia C B, et al. The mechanisms of underwater wet flux-cored arc welding assisted by ultrasonic frequency pulse high-current [J]. J. Mater. Process. Technol., 2022, 304: 117567
[84] Madani T, Boukraa M, Aissani M, et al. Experimental investigation and numerical analysis using Taguchi and ANOVA methods for underwater friction stir welding of aluminium alloy 2017 process improvement [J]. Int. J. Press. Vessels Pip., 2023, 201: 104879
[85] Dong J L, Zhang D T, Zhang W W, et al. Effect of post-weld heat treatments on the microstructure and mechanical properties of underwater friction stir welded joints of 7003-T4/6060-T4 aluminium alloys [J]. Mater. Sci. Eng., 2023, A862: 144423
[86] Ghazaei Najafabadi M A, Abdollah-Zadeh A, Mofid M A. Post-weld heat treatment effects on microstructure and mechanical properties of underwater friction stir-welded AA 2024/6061 lap joints [J]. Mater. Chem. Phys., 2025, 339: 130789
[87] Basak S, Mond M, Anaman S Y, et al. Gas pocket-assisted underwater friction stir spot welding [J]. J. Mater. Process. Technol., 2023, 320: 118100
[88] Li H L, Liu S X, Sun F X, et al. Improvement of microstructure and mechanical properties for underwater wet 16Mn/304L dissimilar steel welded joints assisted by presetting butter layer [J]. Mater. Today Commun., 2022, 33: 104259
[89] Zhou G F, Zhang Q H, Zhang H, et al. Design of underwater TIG welding torch and study on welding technology for nuclear power plant [J]. Electr. Weld. Mach., 2023, 53(11): 16
周国丰, 张清华, 张 红 等. 核电厂水下TIG焊炬设计及焊接工艺研究 [J]. 电焊机, 2023, 53(11): 16
[90] Zhou Z, Yang C, Guo F T, et al. Research on the welding repair process for defects on the cladding of nuclear power plant pools based on partial dry techniques [J]. MW Met. Form., 2024, (10): 65
周 政, 杨 驰, 郭方涛 等. 基于局部干法的核电水池覆面缺陷焊接修复工艺研究 [J]. 金属加工(热加工), 2024, (10): 65
[91] Yuan P D, Hui N M, Han X W, et al. Research on adaptive variable stiffness compliance control of nuclear power plant pool welding robot [J]. Electron. Sci. Technol., 2025, 38(5): 60
袁鹏达, 回楠木, 韩晓微 等. 核电站水池焊接机器人自适应变刚度柔顺控制 [J]. 电子科技, 2025, 38(5): 60
[92] Zhang X F. Research on arc stability and welding processes of underwater wet welding of ship steels [D]. Guangzhou: South China University of Technology, 2021
张晓峰. 船舶用钢水下湿法焊接电弧稳定性及焊接工艺研究 [D]. 广州: 华南理工大学, 2021
[93] Wang X M. Study on corrosion resistance of EH40 steel and its underwater wet welded joints [D]. Jinan: Qilu University of Technology, 2022
王雪妹. EH40钢及其水下湿法焊接接头的耐蚀性研究 [D]. 济南: 齐鲁工业大学, 2022
[94] Han Y F. Control mechanisms of the processes and joint microstructure mechanical properties in 100 m level water depth submerged arc welding of EH40 steel [D]. Jinan: Shandong University, 2023
韩焱飞. 百米级水深EH40钢水下埋弧焊接工艺过程及接头组织性能的调控机理 [D]. 济南: 山东大学, 2023
[95] Zhang W M, Zhong B L, Zeng X. On-line control and supervision of vessel underwater welding penetration [J]. J. Guangzhou Marit. Coll., 2008, 16(3): 15
张为民, 钟碧良, 曾 岫. 船舶水下焊接熔深在线监测与控制 [J]. 广州航海高等专科学校学报, 2008, 16(3): 15
[96] Chen J J. Application of underwater repair technology for deep offshore wind power projects [J]. J. Guangzhou Marit. Univ., 2024, 32(4): 59
陈建均. 深远海风电工程水下修复工艺的应用 [J]. 广州航海学院学报, 2024, 32(4): 59
[97] Xiao B. Treatment method of the invalid submarine cable hole of offshore wind power single pile foundation [J]. Ship Eng., 2023, 45(suppl.1): 131
肖 斌. 海上风电单桩基础海缆孔失效处理方法 [J]. 船舶工程, 2023, 45(): 131
[98] Wang Z M, Zhang B, Zhang W X, et al. Effect of laser line energy on the microstructure, mechanical properties and corrosion resistance of Q355B welded by local dry underwater laser welding [J]. Opt. Laser Technol., 2025, 183: 112370
[1] Jiqiang HUANG,Long XUE,Junfen HUANG,Yong ZOU,Huli NIU,Deyu TANG. ARC BEHAVIOR AND JOINTS PERFORMANCE OF CMT WELDING PROCESS IN HYPERBARIC ATMOSPHERE[J]. 金属学报, 2016, 52(1): 93-99.
No Suggested Reading articles found!