Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (5): 631-640    DOI: 10.11900/0412.1961.2014.00602
Current Issue | Archive | Adv Search |
CORROSION BEHAVIOR OF PURE Mg BASED ON GENERATION/COLLECTION AND FEEDBACK MODES OF SCANNING ELECTROCHEMICAL MICROSCOPY
Xinyin WANG,Yan XIA,Yaru ZHOU,Linlin NIE,Fahe CAO(),Jianqing ZHANG,Chunan CAO
Department of Chemistry, Zhejiang University, Hangzhou 310027
Cite this article: 

Xinyin WANG, Yan XIA, Yaru ZHOU, Linlin NIE, Fahe CAO, Jianqing ZHANG, Chunan CAO. CORROSION BEHAVIOR OF PURE Mg BASED ON GENERATION/COLLECTION AND FEEDBACK MODES OF SCANNING ELECTROCHEMICAL MICROSCOPY. Acta Metall Sin, 2015, 51(5): 631-640.

Download:  HTML  PDF(5061KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Since electrochemical impedance spectroscopy, polarization curve and hydrogen collection were the main technologies for corrosion research of Mg and its alloy. However, those methods only provide the mean information of entire surface of corrosion electrode. In this work, H2 evolution and active sites of pure Mg from localized sites (point, line and surface) in NaCl and Na2SO4 solution based on generation/collection and feedback modes of scanning electrochemical microscopy (SECM) were studied. The results indicate that both cathodic and anodic polarization are in favor of H2 evolution in NaCl and Na2SO4 solution, which is well in line with the negative difference effect by the classical H2 collection, but the SECM results show that the H2 evolution in localized sites is not uniform and stable. The H2 evolution rate increases with NaCl concentration increasing, which is opposite in Na2SO4 solution. The higher NaCl concentration, anodic polarization and lower pH value accelerate the formation of active sites on pure Mg surface.

Key words:  SECM      pure Mg      hydrogen evolution      active site     
Received:  31 October 2014     
Fund: National Natural Science Foundation of China (Nos.51171172 and 51131005) and Fundamental Research Funds for the Central Universities (No.2015QNA3011)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00602     OR     https://www.ams.org.cn/EN/Y2015/V51/I5/631

Fig.1  Typical curve of tip current (Itip) for hydrogen oxidation with time (t)
Fig.2  Schematics of substrate generation/tip collection mode (a) and feedback mode (b) of scanning electrochemical microscopy (SECM)
Fig.3  Tip current for hydrogen oxidation (Itip) of pure Mg under different over potentials (h) in 0.1 mol/L NaCl (a) and 0.1 mol/L Na2SO4 (b) solution
Fig.4  Line scan results (a) and surface mapping results (b~f) of pure Mg with different polarization potentials in 0.1 mol/L Na2SO4 solution

(a) line scan results at open circuit potential, -0.2 V and 0.1 V polarization

(b) open circuit (c) -0.2 V (d) -0.1 V (e) 0.1 V (f) 0.3 V

Fig.5  Tip current for hydrogen oxidation (Itip) of pure Mg in NaCl and Na2SO4 solutions with different concentrations
Fig.6  Line scan results of pure Mg at open circuit potential in NaCl (a) and Na2SO4 (b) solutions with different concentrations
Fig.7  Surface mappings of pure Mg in 0.1 mol/L (a~c) and 0.5 mol/L (d~f) NaCl solution with 3 h (a, d), 12 h (b, e) and 24 h (c, f)
Fig.8  Surface mappings of pure Mg in 0.1 mol/L NaCl solution at 0.1 V (a~c) and -0.2 V (d~f) polarization with 3 h (a, d), 12 h (b, e) and 24 h (c, f)
Fig.9  Surface mappings of pure Mg in 0.1 mol/L NaCl solution at pH=2 (a~c) and pH=11 (d~f) with 3 h (a, d), 12 h (b, e) and 24 h (c, f)
[1] Cao C N. Principles of Electrochemistry of Corrosion. 3rd Ed., Beijing: Chemical Industry Press, 2008: 258 (曹楚南. 腐蚀电化学原理. 第三版, 北京: 化学工业出版社, 2008: 258)
[2] Song G, Atrens A, Stjohn D, Nairn J, Li Y. Corros Sci, 1997; 39: 855
[3] Baril G, Pébère N. Corros Sci, 2001; 43: 471
[4] Song G L. Corrosion and Protection of Magnesium Alloy. Beijing: Chemical Industry Press, 2006: 30 (宋光铃. 镁合金腐蚀与防护. 北京: 化学工业出版社, 2006: 30)
[5] Hampel C A. The Encyclypedia of Electrochemistry. New York: Reinhold, 1964: 341
[6] Petty R L, Davidson A W, Kleinberg J. J Am Chem Soc, 1954; 76: 363
[7] Makar G L, Kruger J. J Electrochem Soc, 1990; 137: 414
[8] Tunold R, Holtan H, Berge M B H, Lasson A, Steen-Hansen R. Corros Sci, 1977; 17: 353
[9] Bender S, Goellner J, Heyn A, Schmigalla S. Mater Corros, 2012; 63: 707
[10] Frankel G S, Samaniego A, Birbilis N. Corros Sci, 2013; 70: 104
[11] Kirkland N T, Birbilis N, Staiger M P. Acta Biomater, 2012; 8: 925
[12] Dra?i? D, Popi? J. J Appl Electrochem, 1999; 29: 43
[13] Liu W, Cao F, Xia Y, Chang L, Zhang J. Electrochim Acta, 2014; 132: 377
[14] Williams G, McMurray H N. J Electrochem Soc, 2008; 155: C340
[15] Taheri M, Kish J R, Birbilis N, Danaie M, McNally E A, McDermid J R. Electrochim Acta, 2014; 116: 396
[16] Taub I A, Roberts W, LaGambina S, Kustin K. J Phys Chem, 2002; 106A: 8070
[17] Straumanis M E, Bhatia B K. J Electrochem Soc, 1963; 110: 357
[18] King A, Birbilis N, Scully J. Electrochim Acta, 2014; 121: 394
[19] Tian Y, Yang L J, Li Y F, Wei Y H, Hou L F, Li Y G, Murakami R I. Trans Nonferrous Met Soc China, 2011; 21: 912
[20] Song G, Atrens A, John D S, Wu X, Nairn J. Corros Sci, 1997; 39: 1981
[21] Wang L, Shinohara T, Zhang B-P. J Alloys Compd, 2010; 496: 500
[22] Souto R M, González-Garc??a Y, González S. Corros Sci, 2005; 47: 3312
[23] El-Taib Heakal F, Shehata O S, Tantawy N S, Fekry A M. Int J Hydrogen Energy, 2012; 37: 84
[24] Curioni M. Electrochim Acta, 2014; 120: 284
[25] Winzer N, Atrens A, Dietzel W, Raja V S, Song G, Kainer K U. Mater Sci Eng, 2008; A488: 339
[26] Chen J, Wang J Q, Han E H, Ke W. Mater Sci Eng, 2008; A488: 428
[27] Chen J, Wang J Q, Han E H, Dong J H, Ke W. Corros Sci, 2008; 50: 1292
[28] Zhang T, Shao Y W, Meng G Z, Li Y, Wang F H. Electrochim Acta, 2006; 52: 1323
[29] Song R G, Blawert C, Dietzel W, Atrens A. Mater Sci Eng, 2005; A399: 308
[30] Carter T J, Cornish L A. Eng Fail Anal, 2001; 8: 113
[31] Song G, Atrens A. Adv Eng Mater, 2003; 5: 837
[1] Dan LI, Yang LI, Rongsheng CHEN, Hongwei NI. Direct Synthesis of NiCo2O4 Nanoneedles and MoS2 Nanoflakes Grown on 316L Stainless Steel Meshes by Two Step Hydrothermal Method for HER[J]. 金属学报, 2018, 54(8): 1179-1186.
[2] Xiaoming YU, Lili TAN, Zongyuan LIU, Ke YANG, Zhonglin ZHU, Yangde LI. Preparation and Properties of Biological Functional Magnesium Coating on Ti6Al4V Substrate[J]. 金属学报, 2018, 54(6): 943-949.
[3] Xiuling SHANG,Bo ZHANG,Wei KE. Effect of Sb-Rich Intermetallic Phase on the CorrosionResistance of Zn Alloy in Near-Neutral and Acidic Solutions[J]. 金属学报, 2017, 53(3): 351-357.
[4] GAO Shengyuan LE Qichi ZHANG Zhiqiang CUI Jianzhong. EFFECTS OF Al–Al4C3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg[J]. 金属学报, 2010, 46(12): 1495-1500.
No Suggested Reading articles found!