Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (3): 257-271    DOI: 10.11900/0412.1961.2014.00406
Current Issue | Archive | Adv Search |
DEVELOPMENT OF HIGH STRENGTH ALUMINUM ALLOYS AND PROCESSING TECHNIQUES FOR THE MATERIALS
ZHANG Xinming(), DENG Yunlai, ZHANG Yong
School of Materials Science and Engineering, Central South University, Changsha 410083
Cite this article: 

ZHANG Xinming, DENG Yunlai, ZHANG Yong. DEVELOPMENT OF HIGH STRENGTH ALUMINUM ALLOYS AND PROCESSING TECHNIQUES FOR THE MATERIALS. Acta Metall Sin, 2015, 51(3): 257-271.

Download:  HTML  PDF(7777KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The fundamental theories for the development of high strength aluminum alloys and processing techniques for the materials are briefly reviewed in this paper. It specifically focuses on alloying design, casting, homogenization, solution treatment, quenching, pre-stretching and ageing that have been extensively studied recently. Based on these discussions, some perspectives and suggestions have been proposed, which will benefit the development and applications of high strength aluminum alloys.

Key words:  high strength aluminum alloy      aluminum structural material      aluminum alloying design      aluminum processing     
Received:  30 June 2014     
ZTFLH:  TG146.2  
Fund: Supported by National Basic Research Program of China (No.2012CB619500)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00406     OR     https://www.ams.org.cn/EN/Y2015/V51/I3/257

Stage Typical property Key technique and microstructural Typical alloy
characteristic
1st generation Static strength Peak ageing, Cr, Mn-additions 2024-T3, 2014-T6,
1930s~1950s Coherent/semi-coherent precipitates 7075-T6, 7178-T6
Heat-resistant Heat-resistant phase 2618
2nd generation Stress-corrosion cracking Over ageing 7075-T76/T74
1950s~1960s resistant, damage tolerant Discontinuous distribution of grain
boundary precipitates, Cu diffusion
3rd generation High strength, Purifying, Zr-additions 7475-T74
1970s~1980s high toughness, Fine constituent particles 7050-T74
corrosion resistant 2519-T87
High strength, Li alloying 1420, 2090
low density Li-bearing strengthening phase 8090/2091
Heat resistant Rapid solidification, 8009/8109
spray forming heat-resistant phases, Aluminum matrix
fibres or particulates composites
4th generation High strength, Further purifying, 3-step ageing 7150-T77
1990s high toughness, Discontinuous distribution of grain 7055-T77
corrosion resistant, boundary precipitates and high density
more damage-tolerant metastable phases, narrow
precipitation-free-zone (PFZ)
More damage-tolerant Thermo-mechanical processing 2524-T39
clusters, substructures
Low density Li alloying, addition of minor species 2095/2195
Li-bearing strengthening phase 2098/2198
5th generation High strength, Lowering solvus, addition of 7085-T76/T74
2000s~now high toughness, slower diffusing species,
low quench sensitivity phase and grain boundaries with low
energy, high density metastable phases
Low density, more Li alloying, addition of minor species 2099/2199
damage- tolerant Li-bearing strengthening phase 2050/2060
More heat-resistant Addition of minor species, 2039/2139/2040
new heat-resistant phases
Table 1  Development of high strength aluminum alloys, typical properties, key techniques and microstructural characteristics
Fig.1  Crystal structures of GP zone (a), θ″ (b), θ′ (c) and θ phase (Al2Cu) (d) that may precipitate in aged binaryAl-Cu alloys (Light balls represent copper atoms and darker balls represent aluminum atoms)[2]
Fig.2  A comparison of published C-curves corresponding to 90% maximum yield strength for different 7××× alloys[36~38]
Fig.3  Processing-microstructure-property relationships for high strength aluminium alloys[42]
Fig.4  Inhibiting of dislocation movement by fine dispersoids (a) in alloy AlZnMgCu-0.16Zr-0.2Cr-0.3Yb and resulting bowed sub-grain boundaries (b)[50]
Fig.5  A comparison of exfoliation corrosion (EC) for alloy Al-7.81Zn-1.81Mg-1.62Cu under different thermomechanical processings[60]

(a) 100 ℃, 12 h+warm rolling

(b) 200 ℃, 12 h+warm rolling

(c) 300 ℃, 12 h+warm rolling

Fig.6  Mg content-hardness-quench sensitivity relationships for alloy Al-8Zn-xMg-1.6Cu[70]

(a) hardness increases with increasing Mg content

(b) the alloy becomes more quench sensitive with increasing Mg content

Fig.7  Bright field (a) and dark field (b) TEM images showing the distribution of Al3Zr dispersoids in the air cooled condition, and corresponding micro-beam-diffraction-pattern (MBDP) (c, d) in different grains with the incident electron-beam parallel to [011] Al3Zr (The dark field image uses the diffraction spot from Al3Zr dispersoids appearing at (100) positions, which are prohibited reflection positions for the face-centred cubic matrix)[77]
图8  Al-3.48Cu-0.71Mg合金中的S与 ω 相[82]
Fig.9  Distribution of the precipitates in alloy 2519Aafter different interrupt ageing processes[100]
(a) T87 (b) T8I6 (c) T9I6
Fig.10  The volume fraction of recrystallization of alloy 7050 plate after solution treatment is affected by the cooling rates after homogenization[107]

(a) water quenching

(b) cooling with furnace, arrows indicate particle stimulated nucleation

Fig.11  Schematic of retrogression and re-ageing (RRA) heat treatment
Fig.12  Effects of RRA heat treatment on hardness or yield strength[126]
Fig.13  Effect of high temperature pre-precipitation on distribution of grain boundary precipitates in aluminum alloy 7A55[127]

(a) 450 ℃, 30 min+480 ℃, 30 min

(b) 450 ℃, 30 min+480 ℃, 30 min + 400 ℃, 30 min

Fig.14  A airplane wing panel for Airbus A380[137]
Fig.15  Precipitation of Al2Cu in alloy Al-4Cu is affected by external stress direction during ageing[139]

(a) ageing at 201 ℃, 4 h

(b) creep ageing at 201 ℃, 4 h, 40 MPa

Stage Typical property Key technique Typical alloy
1st generation Static strength Peak ageing, 7A04(LC4), 2A12(LY12),
1950s~1970s Cr, Mn-additions 2014(D10)
2nd generation Stress-corrosion cracking Over ageing 7A09-T73, T74(7075-T73, T74)
1970s~1980s resistant, damage tolerant (LC9), 2219(LY16)
3rd generation High strength, Purifying, Zr-addition 7475, 2124, 2324, 7050
1980s~2000s high toughness, Fine constituent particles, 7B04, 2D70, 2D12, 2B06 and
corrosion-resistant two-step ageing, lowering 5A90, 1420(Al-Li)
density
4th generation 2000s~ High strength, high toughness, Further purifying, multi-stage 7A55, 2A97, 2E12, 7B50
corrosion-resistant, high heat treatment, Li alloying
damage-tolerant
5th generation 2005s~ Low quench-sensitivity, Lowering solvus, addition of 7A50, 7A85, 7B85
high comprehensive properties slower diffusing species
Table 2  Development of high strength aluminum alloys in China
[1] Mondolfo L F,translated by Wang Z T,Zhang Z L,Zhen X. Microstructure and Properties of Aluminum Alloy. Beijing: Metallurgical Industry Press, 1988: 1
(Mondolfo L F 著,王祝堂,张振录,郑璇译. 铝合金的组织与性能. 北京: 冶金工业出版社, 1988: 1)
[2] Polmear I J. Light Alloys: Metallurgy of the Light Metals. 4th Ed., Melbourne: Elsevier′s Science and Technology, 2006: 1
[3] Immarigeon J P, Holt R T, Koul A K, Zhao L, Wallace W, Beddoes J C. Mater Charact, 1995; 35: 41
[4] Rioja R J, Liu J. Metall Mater Trans, 2012; 43A: 3325
[5] Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, Miller W S. Mater Sci Eng, 2000; A280: 102
[6] Wilm A. Metall: Zeitschrift für die Gesamte Hüttenkunde, 1911; 8: 225
[7] Sander W, Meissner K L. Zeitschrift für Metallkunde, 1923; 15: 181
[8] Aluminum Association. International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys. Arlington, Virginia: The Aluminum Association, 2006: 1
[9] Yao J S, Cai Y F, Li C G. Aero Manuf Technol, 2007; (10): 36
(姚君山, 蔡益飞, 李程刚. 航空制造技术, 2007; (10): 36)
[10] Starke Jr E A, Staley J T. Prog Aerosp Sci, 1996; 32: 131
[11] Fisher J J, Kramer L S, Pickens J R. Adv Mater Processes, 2002; 160(9): 43
[12] Rioja R J. Mater Sci Eng, 1998; A257: 100
[13] Peel C J, Evans B, Mcdarmaid D. In: Davis J R ed., Proc Third Aluminium-Lithiun Conference, Materials Park, OH: ASM International, 1986: 26
[14] Bretz P E, Sawtell R R. In: Davis J R ed., Proc Third Aluminium-Lithiun Conference, Materials Park, OH: ASM International, 1986: 47
[15] Burton C L, Mayer L W, Spuhler E H. In: Van Horn K R ed., Aircraft and Aerospace Applications. Vol.2, Materials Park, OH: American Society for Metals, 1967: 1
[16] Fridlyander I N, Sandler V S, Nikolskaya T I. Met Sci Heat Treat, 1983; 25: 495
[17] Friedlander I N, Bratukhin A G, Davydov V A. Soviet Al-Li Alloys of Aerospace Applications. Garmisch-Partenkirchen: DMG Verlag, 1992: 1
[18] Aerospace Material Specification, AMS 4252, sae, March, 1999
[19] Aerospace Material Specification, AMS 4206A, sae, Jan., 1999
[20] Williams J C, Starke J E A. Acta Mater, 2003; 51: 5775
[21] Aerospace Material Specification, AMS 4296, Aug., 2003
[22] Shi Y J, Pan Q L, Li M J, Huang X, Li B. J Alloys Compd, 2012; 612: 42
[23] Wen S P, Gao K Y, Li Y, Huang H, Nie Z R. Scr Mater, 2011; 65: 592
[24] Wen S P, Xing Z B, Huang H, Li B L, Wang W, Nie Z R. Mater Sci Eng, 2009; A516: 42
[25] Nie Z R, Wen S P, Huang H, Li B L, Zuo T Y. Chin J Nonferrous Met, 2011; 21: 2361
(聂祚仁, 文胜平, 黄 晖, 李伯龙, 左铁镛.中国有色金属学报, 2011; 21: 2361)
[26] Zhou X W, Liu Z Y, Bai S, Liu M, Ying P Y. Mater Sci Eng, 2013; A564: 186
[27] Kalu P N, Waller E A. Scr Mater, 1998; 39: 1599
[28] Hamilton B C, Saxena A. Eng Fract Mech, 1999; 62: 1
[29] Kermanidis A T, Zervaki A D, Haidemenopoulos G N, Pantelakis S G. Mater Des, 2010; 31: 42
[30] Vural M, Caro J. Mater Sci Eng, 2009; A520: 56
[31] Fridlyander I N. Met Sci Heat Treat, 2001; 43: 6
[32] Prasad N E, Gokhale A A, Wanhill R J H. Aluminium-Lithium Alloys. Amsterdam: Elsevier, 2014: 1
[33] Li J F, Zheng Z Q, Chen Y L, Zhang X H. Aerosp Mater Technol, 2012; (1): 13
(李劲风, 郑子樵, 陈永来, 张绪虎. 宇航材料工艺, 2012; (1): 13)
[34] Dursun T, Soutis C. Mater Des, 2014; 56: 862
[35] Liu S D, Zhang X M, You J H, Huang Z B, Zhou Z P. Mater Sci Technol, 2008; 24: 1419
[36] Boselli J, Chakrabarti D J, Shuey R T. Al Alloys, 2008; 1: 202
[37] Fink W L, Willey L A. Trans AIME, 1948; 175: 414
[38] Shuey R T, Barlat F, Karabin M E, Chakrabarti D J. Metall Mater Trans, 2009; 40A: 365
[39] Lequeu P, Smith K P, Daniélou A. J Mater Eng Perform, 2010; 19: 841
[40] Zhang X M, Zhang X Y, Liu S D, Liu Y. J Cent South Univ (Sci Technol), 2007; 38: 789
(张新明, 张小艳, 刘胜胆, 刘 瑛. 中南大学学报(自然科学版), 2007; 38: 789)
[41] Kumaran S M. Mater Sci Eng, 2011; A528: 4152
[42] Dursun T, Soutis C. Mater Des, 2014; 56: 862
[43] Engler O, Sachot E, Ehrstrom J C, Reeves A, Shahani R. Mater Sci Technol, 1996; 12: 717
[44] Starink M J, Wang S C. Acta Mater, 2003; 51: 5131
[45] Zhen L, Chen J Z, Yang S J, Shao W Z, Dai S L. Mater Sci Eng, 2009; A504: 55
[46] Deng Y L, Wan L, Zhang Y, Zhang X M. J Alloys Compd, 2010; 498: 88
[47] Ye L Y, Gu G, Liu J, Jiang H, Zhang X. Mater Sci Eng, 2013; A582: 84
[48] Zhang X M, Wang W T, Chen M A, Gao Z G, Jia Y Z, Ye L Y, Kuang X Y. Trans Nonferrous Met Soc, 2010; 20: 727
[49] Fang H C, Chen K H, Chen X, Chao H, Peng G S. Corros Sci, 2009; 51: 2872
[50] Zhang X M, Liu S D, Liu Y, Zhang X Y. J Cent South Univ (Sci Technol), 2007; 38: 181
(张新明, 刘胜胆, 刘 瑛, 张小艳. 中南大学学报(自然科学版), 2007; 38: 181)
[51] Lin Z Q, Ru H Q, Zhao G, Sun G J. Key Eng Mater, 1991; 20: 2369
[52] Yang S J, Xie Y H, Zhu N, Dai S L, Lu Z, Su B, Yan M G. Chin J Mater Res, 2002; 16: 406
(杨守杰, 谢优华, 朱 娜, 戴圣龙, 陆 政, 苏 彬, 颜鸣皋. 材料研究学报, 2002; 16: 406)
[53] He Y D, Zhang X M, You J H. Trans Nonferrous Met Soc, 2006; 16: 1228
[54] Ohnishi T, Ibaraki Y, Ito T. Mater Trans, 1989; 30: 601
[55] Avan A. Zeitschrift für Metallkunde, 1989; 80: 170
[56] Li J F, Birbilis N, Li C X, Jia Z Q, Cai B, Zheng Z Q. Mater Charact, 2009; 60: 1334
[57] Xiao Y P, Pan Q L, Li W B, Liu X Y, He Y B. Mater Des, 2011; 32: 2149
[58] Xu D K, Birbilis N, Rometsch P A. Corros Sci, 2012; 54: 17
[59] Zhang X M, Huang Z B, Liu S D, Liu W H, Zhang C, Du Y X. Chin J Nonferrous Met, 2006; 37: 1
(张新明, 黄振宝, 刘胜胆, 刘文辉, 张 翀, 杜予暄. 中国有色金属学报, 2006; 37: 1)
[60] Deng Y L, Zhang Y Y, Wan L, Zhang X M. Mater Sci Eng, 2012; A554: 33
[61] Liu G, Zhang G J, Ding X D, Sun J, Chen K H. Mater Sci Eng, 2003; A344: 113
[62] Steglich D, Brocks W, Heerens J, Pardoen T. Eng Frac Mech, 2008; 75: 3692
[63] Liu G, Sun J, Nan C W, Chen K H. Acta Mater, 2005; 53: 3459
[64] Zuo Y, Nagaumi H, Cui J. J Mater Process Technol, 2008; 197: 109
[65] Li S, Sun F, Li H. Acta Mater, 2010; 58: 1317
[66] Feng D, Zhang X M, Liu S D, Wu Z Z, Wang T. Chin J Nonferrous Met, 2014; 24: 2122
(冯 迪, 张新明, 刘胜胆, 吴泽政, 王 婷. 中国有色金属学报, 2014; 24: 2122)
[67] Li S Y, Surya R K, Irene J B. Mater Sci Eng, 2005; A410: 207
[68] Zhang X M, Deng Y L, Zhang Y. Chin Pat, ZL200910043001.3, 2011
(张新明, 邓运来, 张 勇. 中国专利, ZL200910043001.3, 2011)
[69] Zhang J, Deng Y L, Yang W, Hu S, Zhang X M. Mater Des, 2014; 56: 334
[70] Deng Y L, Wan L, Zhang Y Y, Zhang X M. J Alloys Compd, 2011; 509: 4636
[71] Toor P M. Eng Fract Mech, 1973; 5: 837
[72] Bucci R J, Warren C J, Starke E A. J Aircraft, 2000; 37: 122
[73] Dursun T, Soutis C. Mater Des, 2014; 56: 862
[74] Suzuki H, Kanno M, Saitoh H. J Jpn Inst Light Met, 1984; 34: 630
[75] Suzuki H, Kanno M, Saitoh H. J Jpn Inst Light Met, 1986; 36: 22
[76] Liu S D, Liu W J, Zhang Y, Zhang X M, Deng Y L. J Alloys Compd, 2010; 507: 53
[77] Zhang Y, Bettles C, Rometsch P A. J Mater Sci, 2014; 49: 1709
[78] He Y D, Zhang X M. Chin J Nonferrous Met, 2005; 15: 1917
(贺永东, 张新明. 中国有色金属学报, 2005; 15: 1917)
[79] Lim S T, Yun S J, Nam S W. Mater Sci Eng, 2004; A371: 82
[80] Marlaud T, Deschamps A, Bley F, Lefebvre W, Baroux B. Acta Mater, 2010; 58: 248
[81] Feng D, Zhang X M, Liu S D, Wang T, Wu Z Z, Guo Y W. Mater Sci Eng, 2013; A588: 34
[82] Li S Y, Zhang J, Yang J L, Deng Y L, Zhang X M. Acta Metall Sin (Engl Lett), 2014; 27: 107
[83] Bakavos D, Prangnell P B, Bes B, Eberl F. Mater Sci Eng, 2008; A491: 214
[84] Chul O M, Byungmin A. Trans Nonferrous Met Soc, 2014; 24: 53
[85] Tang H G, Cheng Z Q, Liu J W, Ma X. Mater Sci Eng, 2012; A550: 51
[86] Eddahbi M, Carreño F, Ruano O A. Mater Lett, 2006; 60: 3232
[87] Liu J Z, Yang S S, Wang S B, Chen J H, Wu C L. J Alloys Compd, 2014; 613: 139
[88] Bai S, Liu Z, Zhou X, Xia P, Liu M, Zeng S. Mater Sci Eng, 2014; A611: 69
[89] Ebrahimi G R, Zarei-Hanzaki A, Haghshenas M, Arabshahi H. J Mater Process Technol, 2008; 206: 25
[90] Feng Z Q, Yang Y Q, Huang B, Luo X, Li M H, Han M, Fu M S. Acta Mater, 2011; 59: 2412
[91] Marceau R K W, Sha G, Lumley R N, Ringer S P. Acta Mater, 2010; 58: 1795
[92] Wang S C, Starink M J, Gao N. Scr Mater, 2006; 54: 287
[93] Liu Y. Master Thesis, Central South University, Changsha, 2008
(刘 瑛. 中南大学硕士学位论文, 长沙, 2008)
[94] Sun D X, Zhang X M, Ye L Y, Gu G, Jiang H C, Gui X H. Mater Sci Eng, 2014; A620: 241
[95] Gao Z G, Zhang X M, Chen M A. J Alloys Compd, 2009; 476: L1
[96] Gao Z G, Zhang X M, Zhao Y S, Chen M A, Li H J. J Alloys Compd, 2009; 481: 422
[97] Li H Z, Wang H J, Liang X P, Liu H T, Liu Y, Zhang X M. Mater Sci Eng, 2011; A528: 1548
[98] Ye L Y, Gu G, Zhang X M, Sun D, Jiang H, Zhang P. Mater Sci Eng, 2014; A590: 97
[99] Gu G. Master Thesis, Central South University, Changsha, 2014
(顾 刚. 中南大学硕士学位论文, 长沙, 2014)
[100] Gu G, Ye L Y, Jiang H C, Sun D X, Zhang P, Zhang X M. Trans Nonferrous Met Soc, 2014; 24: 2295
[101] Liu W H, He Z T, Chen Y Q, Tang S W. Trans Nonferrous Met Soc, 2014; 24: 2179
[102] Wang W T, Zhang X M, Gao Z G, Jia Y Z, Ye L Y, Zheng D W, Liu L. J Alloys Compd, 2010; 491: 366
[103] Fu Y, Xie S S, Xiong B Q, Huang G J, Cheng L. J Plast Eng, 2010; 17(6): 103
(付 垚, 谢水生, 熊柏青, 黄国杰, 程 磊. 塑性工程学报, 2010; 17(6): 103)
[104] Zhang T, Wu Y X, Gong H, Zheng X Z, Jiang S S. Trans Nonferrous Met Soc, 2014; 24: 2150
[105] Deng Y L, Zhang Y Y, Wan L, Zhu A F, Zhang X M. Metall Mater Trans, 2013; 44A: 2470
[106] Liu S D, You J H, Zhang X M, Deng Y, Yuan Y. Mater Sci Eng, 2010; A527: 1200
[107] Liu S D, Yuan Y B, Li C B, You J H, Zhang X M. Met Mater Int, 2012; 18: 679
[108] Yuan W J, Wu Y X. J Cent South Univ (Sci Technol), 2011; 42: 2303
(袁望姣, 吴运新. 中南大学学报(自然科学版), 2011; 42: 2303
[109] Tang J G, Chen H, Zhang X M, Liu S D, Liu W J, Ouyang H, Li H P. Trans Nonferrous Met Soc, 2012; 22: 1255
[110] Rossini N S, Dassisti M, Benyounis K Y, Olabi A G. Mater Des, 2012; 35: 572
[111] Robinson J S, Tanner D A, Truman C E, Paradowska A M, Wimpory R C. Mater Charact, 2012; 65: 73
[112] Li P Y, Xiong B Q, Zhang Y A, Li Z H, Zhu B H, Wang F, Liu H W. Trans Nonferrous Met Soc, 2012; 22: 268
[113] Li P Y, Xiong B Q, Zhang Y A, Li Z H, Zhu B H, Wang F, Liu H W. Chin J Nonferrous Met, 2011; 21: 961
(李培跃, 熊柏青, 张永安, 李志辉, 朱宝宏, 王 锋, 刘红伟. 中国有色金属学报, 2011; 21: 961)
[114] Shang B C, Yin Z M, Wang G, Liu B, Huang Z Q. Mater Des, 2011; 32: 3818
[115] Deng Y L, Guo S G, Xiong C X, Zhang X M. J Aero Mater, 2010; 30(6): 21
(邓运来, 郭世贵, 熊创贤, 张新明. 航空材料学报, 2010; 30(6): 21)
[116] Qi L, Li M, Ma M, Jing Q, Li G, Liu R. Sci Chin-Phys Mech Astro, 2010; 53: 2037
[117] Mascarenhas N, Mudawar I. Int J Heat Mass Trans, 2010; 53: 5871
[118] Liu S D, Zhong Q M, Zhang Y, Liu W J, Zhang X M, Deng Y L. Mater Des, 2010; 31: 3116
[119] Sun H C, Chao L S. Mater Trans, 2009; 50: 1396
[120] Sugianto A, Narazaki M, Kogawara M, Shirayori A. J Mater Process Technol, 2009; 209: 4627
[121] Hewakandamby B N. Int J Heat Mass Trans, 2009; 52: 396
[122] Zhang Y, Deng Y L, Zhang X M. Chin J Nonferrous Met, 2008; 18: 1788
(张 勇, 邓运来, 张新明. 中国有色金属报, 2008; 18: 1788)
[123] Silk E A, Golliher E L, Paneer S R. Energy Convers Manage, 2008; 49: 453
[124] Anna A P, Kiyoshi O, Michael A. Int J Heat Fluid Flow, 2008; 29: 131
[125] Jiang K D, Long C, Zhang Y Y, Deng Y L. Trans Nonferrous Met Soc, 2014; 24: 2117
[126] Cina B, Gan R. US Pat, 3856584, 1974
[127] Zhang X M, You J H, Zhang X Y, Liu S D. Chin J Nonferrous Met, 2007; 17: 1922
(张新明, 游江海, 张小艳, 刘胜胆. 中国有色金属学报, 2007; 17: 1922)
[128] Ho K C, Lin J, Dean T A. Int J Plast, 2004; 20: 733
[129] Zhang J, Deng Y L, Zhang X M. Mater Sci Eng, 2013; A563: 8
[130] Zhang X M, Ye L Y, Liu Y W, Tang J G, Zheng D W. Mater Sci Technol, 2011; 27: 1588
[131] Ye L Y, Zhang X M, Zhen D W, Liu S D, Tang J G. J Alloys Compd, 2009; 487: 109
[132] Kaibyshev R, Osipova O. Mater Sci Technol, 2005; 21: 1209
[133] Threadgill P L, Leonard A J, Shercliff H R, Withers P J. Int Mater Rev, 2009; 54: 49
[134] Mishra R S, Ma Z Y. Mater Sci Eng, 2005; A50: 1
[135] Schubert E, Klassen M, Zerner I, Walz C, Sepold G. J Mater Process Technol, 2001; 115: 2
[136] Ion J C. Sci Technol Weld Joining, 2000; 5: 265
[137] Watchamk K. Mater World, 2004; 12(2): 10
[138] Zhu A W, Starke Jr E A. Mater Process Technol, 2001; 117: 354
[139] Zhu A W, Starke Jr E A. Acta Mater, 2001; 49: 2285
[140] Wang Z T,Tian R Z. Aluminum Alloy and Processing Manual. Changsha: Central South University Press, 2005: 1
(王祝堂,田荣璋. 铝合金及其加工手册. 长沙: 中南大学出版社, 2005: 1)
[141] Zhang Y,Milkereit B,Weyland M,Rometsch A. Sci Rep, in press
[1] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[2] CONG Baoqiang QI Bojin ZHOU Xingguo LUO Jun. INFLUENCES OF ULTRASONIC PULSE SQUARE-WAVE CURRENT PARAMETERS ON MICROSTRUCTURES AND MECHANICAL PROPERTIES OF 2219 ALUMINUM ALLOY WELD JOINTS[J]. 金属学报, 2009, 45(9): 1057-1062.
[3] 许良红 Xu Liang-Hong; tian zhiling Tian. The investigation of the oriented precipitate-free zone in high strength aluminum alloy welds[J]. 金属学报, 2008, 44(1): 91-97 .
No Suggested Reading articles found!