Please wait a minute...
金属学报  1998, Vol. 34 Issue (7): 735-741    
  论文 本期目录 | 过刊浏览 |
快速加热和冷却法制备的极细多芯Nb_3A1线材的超导特性
毛大立;伊藤喜久男;和田仁
上海交通大学材料科学系国家教委高温材料及高温测试开放实验室;上海;200030;日本国立金属材料技术研究所;日本茨城县筑波;305;日本国立金属材料技术研究所;日本茨城县筑波;305
CHARACTERIZATION OF A MULTIFILAMENTARY Nb3Al WIRE FABRICATED BY RAPIDLY HEATING AND RAPIDLY QUENCHING METHOD
MAO Dali(The Public Laboratory of State Education Commission for High Temperature Materials and High Temperature Tests; Department of Materials Science; Shanghai Jiaotong University; Shanghai 200030)ITOH Kihao;WADA Hitoshi(National Research Institute for Metals; Tsukuba; Ibaraki 305; Japan)
引用本文:

毛大立;伊藤喜久男;和田仁. 快速加热和冷却法制备的极细多芯Nb_3A1线材的超导特性[J]. 金属学报, 1998, 34(7): 735-741.
, , . CHARACTERIZATION OF A MULTIFILAMENTARY Nb3Al WIRE FABRICATED BY RAPIDLY HEATING AND RAPIDLY QUENCHING METHOD[J]. Acta Metall Sin, 1998, 34(7): 735-741.

全文: PDF(1346 KB)  
摘要: 介绍了一种快速加热快速冷却制备接近化学计量比的Nb3A1极细多芯线材的方法用四探针法测定试样的临界温度为17K,用Splitpair型磁体测试了试样随温度和磁场变化的临界电流.归一化后的单位体积钉扎力与所加磁场符合Kramer方程,晶界为可能的磁力线钉扎源由临界电流得到的上临界磁场与温度呈线性关系,外推得到临界温度的计算值与实测值基本一致.通过临界电流与温度和磁场的关系得到了Ic-T-B三维临界界面
关键词 Nb3A1临界温度临界电流临界磁场    
Abstract:A rapidly heating and rapidly quenching method for the manufacturing of multifilamentary Nb3Al wire was introduced, which can obtained Nb3Al with the near stoichiometric composition. After annealing at 800 ℃ for 2, 12 and 96 h, critical temperature Tc of the samples measured by four probe method is 17 K. Critical curreds Ic was measured in the function of temperature and applied field in a split pair magnet. The relationship of normalized pinning force vs applied field follows simple Kramer equation. Grain boundaries were most probable pinning source for the magnetic line of force. The obtained upper critical field Bc2 existed a linear relation with the temperature. A critical surface of Ic - T - B was also plotted from the measurement of critical current.
Key wordsNb3Al    critical temperature    critical current    critical field
收稿日期: 1998-07-18     
基金资助:日本科技厅特别奖学基金
1 Foner S, McNiff E J Jr, Geballe T H, Willens R H, Buehler E. Physica, 1971; 55: 534
2 Thirmr C L H, Pourralnimi S, Schwartz B B, Foner S. IEEE Trans Magn, 1985; MAG-21: 756
3 Yamada Y, Ayai N, Takahashi K, Sato K, Sugimoto M, Ando T, Takahashi Y, Nishi M. Adv Cryop Egg, 1994;40: 407
4 Inoue K, Iijima Y, Takeuchi T. Appl Phys Lett, 1988; 52: 1724
5 Takeuchi T, Iijima Y, Kosuge M, Kuroda T, Yuyama M, Inoue K. IEEE Trans Magn, 1989; MAG-25: 2068
6 Takeuchi T, Kosuge M, Iijima Y, Hasegawa A, Kiyoshi T, Inoue K. IEEE Trans Magn, 1991; MAG-27: 2045
7 Kuroda T, Wada H, Bray S L, Ekin J W. Fusion Eng Design, 1993; 20: 271
8 黑田恒生,和田仁日本金属学会志,1991;55:344(Kuroda T, Wada H J Jpn Inst Met, 1991; 55: 344)
9 Takeuchi T, Kuroda T, Itch K, Kosuge M, Iijima Y, Kiyoshi T, Matsumoto F, Inoue K. J Fusion Energy,1992; 11(1): 7
10黑田恒生,牛桐一宗,小高久男,汤山道也,和田仁,井上廉,罔田东一.日本原子力学会志,1995 37: 652(Kuroda T, Katagiri K, Kodafor H, Yuyama M, Wada H, Inoue K; Okada T.J At Enerpy Soc Jpn, 1995; 37: 652)
11 Kuroda T, Katagiri K, Kodaka H, Yuyama M, Wada H, Inoue K, Okada T. Physica,1996; B216: 230
12 Iijima Y, Kosuge M, Takeuchi T, Inoue K. Adv Cryop Eng, 1994; 40: 899
13 Iijima Y, Kosuge M, Takeuchi T, Inoue K. In: Haruyama T, Mitsui T, Yamafuji K eds., Proc 16th IntCryopenic Engineeriny Conf Int/Cryogenic Materials Conf Kitakyushu, Japan, Elsevier Science, 1996: 1697
14 Fukuda K, Iwaki G, Kimura M, Sakai S, Iijima Y, Takeuchi T, Inoue K, Kobayashi N, Watanabe K, Await S.In: Haruyama T, Mitsui T, Yamafuji K eds., Proc 16th Int Cryogenic Engineering/Conf Int CryogenicMaterials Conf Kitakyushu, Japan, Elsevier Science, 1996: 1669
15 Kramer E J. J Appl Phys, 1973; 44: 1360
16 Togano K, Takeuchi H, Tachikawa K. IEEE Trans Magn, 1983; MAG-19: 414
17 Takeuchi T, Togano T, Tachilera K. IEEE Trans Magn, 1987; MAG-23: 956
18 Clemente G, Habbal F, Tumbull D, Bevk J. Appl Phes Lett, 1985; 47: 640
19 Mueller D, Kehlenbeck M, Schaper W, Freyhart H C. Supereond Sci Technol Proc Conf 1991; 4: 365
20 Inoue K, Takeuchi T, Iijima L Y, Kosuge M. Cryogenics, 1989; 29: 361
[1] 孙超 谭军 应诗浩 李聪 彭倩 赵素琼. 辐照后N18锆合金氢致延迟开裂临界温度预测[J]. 金属学报, 2010, 46(7): 805-809.
[2] 孙超 谭军 应诗浩 李聪 彭倩 赵素琼. N18锆合金氢致裂纹延迟开裂临界温度研究[J]. 金属学报, 2009, 45(5): 541-546.
[3] 汪涛; 鲁玉祥; 祝美丽; 张俊善; 季世军 . 热爆合成TiAl3临界温度判据的DSC研究[J]. 金属学报, 2001, 37(4): 377-380 .
[4] 邱竹贤;姚广春;于亚鑫;张中林. 锂盐碳阳极的可湿性与临界电流密度研究[J]. 金属学报, 1994, 30(22): 439-443.
[5] 吴奕初;常香荣;田中卓;肖纪美. 高纯Fe中氢损伤规律的研究[J]. 金属学报, 1992, 28(2): 43-46.