Please wait a minute...
金属学报  2006, Vol. 42 Issue (10): 1087-1090     
  论文 本期目录 | 过刊浏览 |
高拉速吹氩板坯连铸结晶器内的卷渣机理研究
张胜军 朱苗勇 张永亮 郑淑国 程乃良 宋景欣
东北大学材料与冶金学院; 沈阳 110004
STUDY ON MECHANISM OF ENTRAPMENT IN SLAB CONTINUOUS CASTING MOULD WITH HIGH CASTING SPEED AND ARGON BLOWING
东北大学材料与冶金学院
引用本文:

张胜军; 朱苗勇; 张永亮; 郑淑国; 程乃良; 宋景欣 . 高拉速吹氩板坯连铸结晶器内的卷渣机理研究[J]. 金属学报, 2006, 42(10): 1087-1090 .

全文: PDF(210 KB)  
摘要: 摘 要 基于相似理论,利用物理模型研究了高拉速吹氩条件下结晶器内的卷渣行为,考察了工艺操作参数对结晶器内液面波动和卷渣行为的影响。研究结果表明:在结晶器水口吹气条件下,大气泡对渣层的卷混是引起卷渣的主要方式,其次是漩涡卷渣,通常认为的剪切卷渣则不易发生。此外,本研究还对各种卷渣行为进行了分析,揭示其内在机理,提出了避免卷渣的措施。
关键词 连铸结晶器高拉速吹氩卷渣机理物理模拟    
Abstract:ABSTRACT A physical model was established to study the mechanism of molten slag behavior in slab continuous casting mould with high casting speed and argon blowing, and the effects of operation parameters on the liquid surface level oscillation and the slag entrapment were investigated. The results showed that slag entrapment was mainly caused by the turbulent large bubbles at the interface of slag and molten steel in mould with high casting speed and gas bubbling, and the vortex at the surface also was the way to cause slag entrapment, but there is no phenomenon of entrapment occurring due to high shear stress that was mentioned the main reason previously. In addition, the behavior and mechanism of typical slag entrapment were discussed, and the measures to eliminate slag entrapment were also presented.
Key wordscontinuous casting mould    high casting speed    argon blowing    mechanism of entrapment    physical modeling
收稿日期: 2006-03-07     
ZTFLH:  TF777.1  
[1]Gupta D,Lahiri A K.Metall Mater Trans,1996;27B:695
[2]Iguchi M,Tomoyuki J,Mizuno Y.ISIJ Int,2000;40:685
[3]Tanaka H,Kuwatori H,Nishihara R.Tetsu Hagané,1992;78:761(田中宏幸,锹取英宏,西原良治.铁ヒ钢,1992;78:761)
[4]Theodorakakos A,Bergeles G.Metall Mater Trans,1998;29B:1321
[5]Wang Z,Mukai K,Izu D.ISIJ Int,1999;39:154
[6]McDavid R M,Thomas B G.Metall Mater Trans,1996;27B:672
[7]Panaras G A,Theodorakakos A,Bergeles G.Metall Mater Trans,1998;29B:1117
[8]Lei H,Xu H H,Zhu M Y,Gan Y,Liu X,Ni M S,Liu J Q.Iron Steel,1999;34(8):20(雷洪,许海虹,朱苗勇,干勇,刘新,倪满森,刘家奇.钢铁,1999;34(8):20)
[9]Wen G H,Li G,Zhang J C.Iron Steel,1997;32(Suppl.):691(文光华,李刚,张建春.钢铁,1997;32(suppl.):691)
[10]BaoY P,Zhu J Q,Jiang W,Wang C X,Tian N Y,Xu B M.J Univ Sci Technol Beijing,2000;22:409(包燕平,朱建强,蒋伟,王昌旭,田乃嫒,徐宝美.北京科技大学学报,2000;22:409)
[11]Tan L J,Shen H F,Liu B C,Liu X,Xu R J,Li Y Q.Acta Metall Sin,2003;39:4(谭利坚,沈厚发,柳百成,刘晓,徐荣军,李永全.金属学报,2003;39:4)
[12]Qian Z D,Wu Y L.Acta Metall Sin,2004;40:1(钱忠东,吴玉林.金属学报,2004;40:1)
[13]Hu H,Zhao H M,Zhang J M,Wang X H,Wang W J.Iron Steel Vanadium Titanium,2005;26(1):1(胡皓,赵和明,张炯明,王新华,王万军.钢铁钒钛,2005;26(1):1)
[1] 周小宾, 赵占山, 汪万行, 徐建国, 岳强. 渣-金界面气泡夹带行为数值物理模拟[J]. 金属学报, 2023, 59(11): 1523-1532.
[2] 刘中秋, 李宝宽, 肖丽俊, 干勇. 连铸结晶器内高温熔体多相流模型化研究进展[J]. 金属学报, 2022, 58(10): 1236-1252.
[3] 王波,沈诗怡,阮琰炜,程淑勇,彭望君,张捷宇. 冶金过程中的气液两相流模拟[J]. 金属学报, 2020, 56(4): 619-632.
[4] 刘中秋,李宝宽,姜茂发,张立,徐国栋. 连铸结晶器内氩气/钢液两相非稳态湍流特性的大涡模拟研究[J]. 金属学报, 2013, 49(5): 513-522.
[5] 贾皓 张振强 于湛 邓康 雷作胜 任忠鸣. FC Mold II电磁制动中磁场匹配对金属液流影响[J]. 金属学报, 2012, 48(9): 1049-1056.
[6] 陈芝会 王恩刚 张兴武 王元华 朱明伟 赫冀成. 行波磁场下吹Ar过程中结晶器内气泡行为的研究[J]. 金属学报, 2012, 48(8): 951-956.
[7] 李宝宽 刘中秋 齐凤升 王芳 徐国栋. 薄板坯连铸结晶器非稳态湍流大涡模拟研究[J]. 金属学报, 2012, 48(1): 23-32.
[8] 王寅 张振强 于湛 贾皓 邓康 雷作胜 任忠鸣. 射流型磁场排布方式控制结晶器内液流的实验研究[J]. 金属学报, 2011, 47(10): 1285-1291.
[9] 于湛 张振强 任忠鸣 雷作胜 邓康. 板坯电磁制动结晶器内流体流动的研究[J]. 金属学报, 2010, 46(10): 1275-1280.
[10] 许秀杰 邓安元 王恩刚 张林涛 张兴武 张永杰 赫冀成. 电磁软接触连铸圆坯表面振痕演变机理[J]. 金属学报, 2009, 45(4): 464-469.
[11] 孟祥宁 朱苗勇. 高拉速板坯连铸结晶器液态渣消耗机理分析[J]. 金属学报, 2009, 45(4): 485-489.
[12] 于海岐; 朱苗勇 . 板坯结晶器电磁制动和吹氩过程的钢/渣界面行为[J]. 金属学报, 2008, 44(9): 1141-1148 .
[13] 曹娜; 朱苗勇 . 吹氩板坯连铸结晶器内双循环流的形成条件[J]. 金属学报, 2008, 44(5): 626-630 .
[14] 于海岐; 朱苗勇 . 板坯连铸结晶器电磁制动和吹氩过程的多相流动现象[J]. 金属学报, 2008, 44(5): 619-625 .
[15] 孟祥宁; 朱苗勇 . 高拉速板坯连铸结晶器液体摩擦机理分析[J]. 金属学报, 2008, 44(10): 1193-1197 .