Please wait a minute...
金属学报  2006, Vol. 42 Issue (9): 989-992     
  论文 本期目录 | 过刊浏览 |
高频电阻加热-轧制复合板温度场的数值模拟
肖楠;陈海耿; 孙世刚;王成军;崔苗;于九明
东北大学材料与冶金学院
SIMULATION OF TEMPERATURE FIELD DURING HIGH-FREQUENCY RESISTANCE HEATING-ROLLING COMPOSITE STRIP
XIAO Nan; CHEN Haigeng;SUN Shigang; WANG Chengjun; CUI Miao;YU Jiuming
东北大学材料与冶金学院
引用本文:

肖楠; 陈海耿; 孙世刚; 王成军; 崔苗; 于九明 . 高频电阻加热-轧制复合板温度场的数值模拟[J]. 金属学报, 2006, 42(9): 989-992 .
, , , , , . SIMULATION OF TEMPERATURE FIELD DURING HIGH-FREQUENCY RESISTANCE HEATING-ROLLING COMPOSITE STRIP[J]. Acta Metall Sin, 2006, 42(9): 989-992 .

全文: PDF(148 KB)  
摘要: 通过数值模拟获得了高频加热-轧制复合过程中的动态温度场.使用的简化模型中热传导方 程的离散采用隐式差分法、区域的离散采用内节点法, 并以Maxwell方程的解确定内热源分布. 考虑到铁磁性物质在温度跨越Curie点时磁导率的突变, 推导了适用于该情况的Maxwell方程一般解. 在此基础上分别模拟了钢-铝,钢-铜和钢-不锈钢这3类板的复合, 给出了工艺参数的优化组合.
关键词 轧制复合邻近效应内节点法    
Abstract:The dynamic temperature field during roll-bonding combined with high-frequency alternating current heating has been numerically simulated by a simplified model. In the simplified model, the governing equation of heat conduction is discretized using implicit finite difference method, and the computational domain is discretized using cell centered scheme, and the solution of Maxwell equation is used to determine the distribution of the internal heating sources. Considering the saltation of magnetic permeability of the ferromagnetic material when its temperature is more than the Curie point, the general solution of Maxwell equation is deduced. Based on our new method three kinds of composite strips (steel-Al, steel-Cu, steel-stainless steel) are performed numerically to validate the feasibility of the combination of various technical parameters.
Key wordsroll-bonding    adjacent effect    cell centered scheme
收稿日期: 2005-12-23     
ZTFLH:  TB331  
[1]Carreon M A,Guliants V V.Catal Today,2005;99:137
[2]Murakami Y,Esumi K,Honda H.Carbon,1996;34:463
[3]Huang L Z.The Principle of Electromagnetic Field.Shanghai:People's Education Press,1980:307(黄礼镇.电磁场原理.上海:人民教育出版社,1980:307)
[4]Ni G Z.The Principle of Engineering Electromagnetic Field.Beijing:Higher Education Press,2002:190(倪光正.工程电磁场原理.北京:高等教育出版社,2002:190)
[5]Zu G Y,Yu J M,Wen J L.Res Iron Steel,2004;(1):30(祖国胤,于九明,温景林.钢铁研究,2004;(1):30)
[6]Devyatko Y N,Rogozhkin S V.Vacuum,2002;66:123
[7]Macdonald J R,Ausloos M.Physica,1997;242A:150
[8]Tao W Q.Numerical Heat Transfer.Xi'an:Xi'an Jiaotong University Press,1988:11(陶文铨.数值传热学.西安:西安交通大学出版社,1988:11)
[9]Croft D R,Lilley D G.Heat Transfer Calculations Using Finite Difference Equations.London:Applied Science Publishers Ltd.,1977:139
[10]Kim I S,Basu A.J Mater Process Technol,1998;77:17
[11]Fu X,Yu J M,Chen H G.Acts Metall Sin,2000;36:828(傅晓,于九明,陈海耿.金属学报,2000;36:828)
[12]Xu Z B,Zhu Z Y,Wang W J,Zhang J M,Wang L F.J Iron Steel Res,1999;11(1):12(许中波,朱志远,王万军,张炯明,王立峰.钢铁研究学报,1999;11(1):12)
[13]Zhao X H.The Pressure Welds.Beijing:China Machine Press,1998:191(赵熹华.压力焊.北京:机械工业出版社,1988:191)
[14]Little G H,Kamtekar A G.Comput Struct,1998;68:157
[15]Miller M K,Babu S S,Sokolov M A,Nanstad R K,Iskander S K.Mater Sci Eng,2002;A327:76L
[1] 张清东,李硕,张勃洋,谢璐,李瑞. 金属轧制复合过程微观变形行为的分子动力学建模及研究[J]. 金属学报, 2019, 55(7): 919-927.
[2] 许光明; 崔建忠 . 液-固相轧制法生产Al-8Sn-2.5Si-2Pd-0.8Cu-0.2Cr/钢复合轴瓦带的组织与性能[J]. 金属学报, 2003, 39(7): 725-728 .
[3] 傅晓; 于九明 . 包铜钢线热浸镀过程的简化模型[J]. 金属学报, 2000, 36(8): 828-832 .
[4] 许光明; 崔建忠 . 不锈钢/Al固液轧制复合过程温度场模拟[J]. 金属学报, 1999, 35(2): 131-133 .
[5] 张彩碚; 崔建忠 . 不锈钢/Al固液轧制复合板材界面剪切强度与界面结构[J]. 金属学报, 1999, 35(2): 113-116 .
[6] 张彩碚; 董林 . 不锈钢/Al固液轧制复合板材界面的精细结构[J]. 金属学报, 1999, 35(2): 117-120 .