|
|
γ-APS接枝环氧树脂分子对环氧涂层/金属界面化学键合的研究 |
操发春1,2, 吴航3( ), 杨延格1,4( ), 曹京宜4, 张涛1,3, 王福会3 |
1 中国科学院金属研究所 沈阳 110016 2 中国科学技术大学材料科学与工程学院 沈阳 110016 3 东北大学材料科学与工程学院 沈阳 110819 4 海军涂料分析检测中心 北京 102442 |
|
Study on Chemical Bonding Between Epoxy Coating and Metal Substrate Using γ-Aminopropyltrimethoxysilaneto Modify Epoxy Resin Molecule |
Fachun CAO1,2, Hang WU3( ), Yange YANG1,4( ), Jingyi CAO4, Tao ZHANG1,3, Fuhui WANG3 |
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 4 Navy Coating Analysis and Test Center, Beijing 102442, China |
引用本文:
操发春, 吴航, 杨延格, 曹京宜, 张涛, 王福会. γ-APS接枝环氧树脂分子对环氧涂层/金属界面化学键合的研究[J]. 金属学报, 2019, 55(2): 238-248.
Fachun CAO,
Hang WU,
Yange YANG,
Jingyi CAO,
Tao ZHANG,
Fuhui WANG.
Study on Chemical Bonding Between Epoxy Coating and Metal Substrate Using γ-Aminopropyltrimethoxysilaneto Modify Epoxy Resin Molecule[J]. Acta Metall Sin, 2019, 55(2): 238-248.
[1] | Wicks Z W, Jones F N, Pappas S P, translated by Jing F L, Jiang Y T et al. Organic Coatings: Science and Technology [M]. Beijing: Chemical Industry Press, 2002: 1(Wicks Z W, Jones F N, Pappas S P著, 经桴良, 姜英涛等译. 有机涂料: 科学与技术 [M]. 北京: 化学工业出版社, 2002: 1) | [2] | Koehler E L.The mechanism of cathodic disbondment of protective organic coatings-aqueous displacement at elevated pH[J]. Corrosion, 1984, 40: 5 | [3] | Sorensen P A, Dam-Johansen K, Weinell C E, et al.Cathodic delamination of seawater-immersed anticorrosive coatings: Mapping of parameters affecting the rate[J]. Prog. Org. Coat., 2010, 68: 283 | [4] | Sorensen P A, Kill S, Dam-Johansen K, et al.Anticorrosive coatings: A review[J]. J. Coat. Technol. Res., 2009, 6: 135 | [5] | Plueddemann E P.Silane Coupling Agents[M]. 2nd Ed., New York: Springer, 1991: 1 | [6] | Harun M K, Lyon S B, Marsh J.A surface analytical study of functionalised mild steel for adhesion promotion of organic coatings[J]. Prog. Org. Coat., 2003, 46: 21 | [7] | Lu X Y, Zuo Y, Zhao X H, et al.The improved performance of a Mg-rich epoxy coating on AZ91D magnesium alloy by silane pretreatment[J]. Corros. Sci., 2012, 60: 165 | [8] | Ramrus D A, Berg J C.Using heterogeneous silane patterns to maintain adhesion and decrease water penetration into epoxy/aluminum interfaces[J]. J. Adhes. Sci. Technol., 2006, 20: 1615 | [9] | van Ooij W J, Child T. Protecting metal with silane coupling agents[J]. Chemtech, 1998, 28: 26 | [10] | van Ooij W J, Zhu D Q, Prasad G, et al. Silane based chromate replacements for corrosion control, paint adhesion, and rubber bonding[J]. Surf. Eng., 2000, 16: 386 | [11] | Wang P, Schaefer D W.Why does silane enhance the protective properties of epoxy films?[J]. Langmuir, 2008, 24: 13496 | [12] | Petrunin M A, Nazarov A P, Mikhailovski Y N.Formation mechanism and anticorrosive properties of thin siloxane films on metal surfaces[J]. J. Electrochem. Soc., 1996, 143: 251 | [13] | Subramanian V, van Ooij W J. Effect of the amine functional group on corrosion rate of iron coated with films of organofunctional silanes[J]. Corrosion, 1998, 54: 204 | [14] | van Ooij W J, Sabata A. Characterization of films of organofunctional silanes by TOFSIMS and XPS[J]. J. Adhes. Sci. Technol., 1991, 5: 843 | [15] | Ellison M D, Gasda P J.Functionalization of single-walled carbon nanotubes with 1,4-benzenediamine using a diazonium reaction[J]. J. Phys. Chem., 2008, 112C: 738 | [16] | Yang H F, Li F H, Shan C S, et al.Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement[J]. J. Mater. Chem., 2009, 19: 4632 | [17] | Sun W, Wang L D, Wu T T, et al.Inhibiting the corrosion-promotion activity of graphene[J]. Chem. Mater., 2015, 27: 2367 | [18] | Ji W G, Hu J M, Liu L, et al.Improving the corrosion performance of epoxy coatings by chemical modification with silane monomers[J]. Surf. Coat. Technol., 2007, 201: 4789 | [19] | Tian W L.Study on the failure mechanisms and lifetime prediction of organic coatings under deep sea environments [D]. Shenyang: Institute of Metal Research, Chinese Academy of Science, 2015(田文亮. 深海交变压力环境下有机涂层的失效机制及寿命预测方法研究 [D]. 沈阳: 中国科学院金属研究所, 2015) | [20] | Uekawa N, Fukuda S, Kakegawa K, et al.Effects of surface modification of α-FeOOH powder on the sintering process of ferrite compacts[J]. Phys. Chem. Chem. Phys., 2001, 3: 5596 | [21] | Ji W G, Hu J M, Zhang J Q, et al.Reducing the water absorption in epoxy coatings by silane monomer incorporation[J]. Corros. Sci., 2006, 48: 3731 | [22] | Yang L X, Feng J, Zhang W G, et al.Experimental and computational study on hydrolysis and condensation kinetics of γ-glycidoxypropyltrimethoxysilane (γ-GPS)[J]. Appl. Surf. Sci., 2010, 257: 990 | [23] | Yang L X, Liu M X, Lei X L, et al.Study on the adsorption behavior of γ-GPS on low carbon steel surfaces using RA-IR, EIS and AFM[J]. Appl. Surf. Sci., 2011, 257: 9895 | [24] | Zhu D Q, van Ooij W J. Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl)propyl]tetrasulfide in sodium chloride solution: Part 2: Mechanism for corrosion protection[J]. Corros. Sci., 2003, 45: 2177 | [25] | Vandenberg E T, Bertilsson L, Liedberg B, et al.Structure of 3-aminopropyl triethoxy silane on silicon oxide[J]. J. Colloid Interface Sci., 1991, 147: 103 | [26] | van Ooij W J, Zhu D, Stacy M, et al. Corrosion protection properties of organofunctional silanes—An overview[J]. Tsinghua Sci. Technol., 2005, 10: 639 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|