|
|
镍基变形高温合金动态软化行为与组织演变规律研究 |
王涛1( ), 万志鹏1,2, 孙宇2, 李钊1, 张勇1, 胡连喜2 |
1中国航发北京航空材料研究院先进高温结构材料重点实验室 北京 100095 2哈尔滨工业大学金属精密热加工国家级重点实验室 哈尔滨 150001 |
|
Dynamic Softening Behavior and Microstructure Evolution of Nickel Base Superalloy |
Tao WANG1( ), Zhipeng WAN1,2, Yu SUN2, Zhao LI1, Yong ZHANG1, Lianxi HU2 |
1 Science and Technology on Advanced High Temperature Structural Materials Laboratory, AEEC Beijing Institute of Aeronautical Materials, Beijing 100095, China 2 National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China |
引用本文:
王涛, 万志鹏, 孙宇, 李钊, 张勇, 胡连喜. 镍基变形高温合金动态软化行为与组织演变规律研究[J]. 金属学报, 2018, 54(1): 83-92.
Tao WANG,
Zhipeng WAN,
Yu SUN,
Zhao LI,
Yong ZHANG,
Lianxi HU.
Dynamic Softening Behavior and Microstructure Evolution of Nickel Base Superalloy[J]. Acta Metall Sin, 2018, 54(1): 83-92.
[1] | Liu W C, Xiao F R, Yao M, et al.Relationship between the lattice constant of γ phase and the content of δ phase, γ'' and γ' phases in inconel 718[J]. Scr. Mater., 1997, 37: 59 | [2] | Nalawade S A, Sundararaman M, Singh J B, et al.Precipitation of γ' phase in δ-precipitated Alloy 718 during deformation at elevated temperatures[J]. Mater. Sci. Eng., 2010, A527: 2906 | [3] | Zhang H J, Li C, Liu Y C, et al.Precipitation behavior during high-temperature isothermal compressive deformation of Inconel 718 alloy[J]. Mater. Sci. Eng., 2016, A677: 515 | [4] | Monajati H, Taheri A K, Jahazi M, et al.Deformation characteristics of isothermally forged UDIMET 720 nickel-base superalloy[J]. Metall. Mater. Trans., 2005, 36A: 895 | [5] | Liu F F, Chen J Y, Dong J X, et al.The hot deformation behaviors of coarse, fine and mixed grain for Udimet 720Li superalloy[J]. Mater. Sci. Eng., 2016, A651: 102 | [6] | Jackson M P, Reed R C.Heat treatment of UDIMET 720Li: The effect of microstructure on properties[J]. Mater. Sci. Eng., 1999, A259: 85 | [7] | Chen J Y, Dong J X, Zhang M C, et al.Deformation mechanisms in a fine-grained Udimet 720LI nickel-base superalloy with high volume fractions of γ' phases[J]. Mater. Sci. Eng., 2016, A673: 122 | [8] | Chang L T, Jin H, Sun W R.Solidification behavior of Ni-base superalloy Udimet 720Li[J]. J. Alloys Compd., 2015, 653: 266 | [9] | Sun Y, Wan Z P, Hu L X, et al.Characterization of hot processing parameters of powder metallurgy TiAl-based alloy based on the activation energy map and processing map[J]. Mater. Des., 2015, 86: 922 | [10] | Wan Z P, Sun Y, Hu L X, et al.Experimental study and numerical simulation of dynamic recrystallization behavior of TiAl-based alloy[J]. Mater. Des., 2017, 122: 11 | [11] | Zhao J W, Ding H, Zhao W J, et al.Modelling of the hot deformation behaviour of a titanium alloy using constitutive equations and artificial neural network[J]. Comp. Mater. Sci., 2014, 92: 47 | [12] | Han Y, Qiao G J, Sun J P, et al.A comparative study on constitutive relationship of as-cast 904L austenitic stainless steel during hot deformation based on Arrhenius-type and artificial neural network models[J]. Comp. Mater. Sci., 2013, 67: 93 | [13] | Peng W W, Zeng W D, Wang Q J, et al.Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial neural network models[J]. Mater. Des., 2013, 51: 95 | [14] | Pu E X, Feng H, Liu M, et al.Constitutive modeling for flow behaviors of superaustenitic stainless steel S32654 during hot deformation[J]. J. Iron Steel Res. Int., 2016, 23: 178 | [15] | Li B, Pan Q L, Yin Z M.Microstructural evolution and constitutive relationship of Al-Zn-Mg alloy containing small amount of Sc and Zr during hot deformation based on Arrhenius-type and artificial neural network models[J]. J. Alloys Compd., 2014, 584: 406 | [16] | Na Y S, Park N K, Reed R C.Sigma morphology and precipitation mechanism in udimet 720Li[J]. Scr. Mater., 2000, 43: 585 | [17] | Furrer D U, Fecht H J.γ' formation in superalloy U720LI[J]. Scr. Mater., 1999, 40: 1215 | [18] | Pang H T, Reed P A S. Effects of microstructure on room temperature fatigue crack initiation and short crack propagation in Udimet 720Li Ni-base superalloy[J]. Int. J. Fatigue, 2008, 30: 2009 | [19] | Pang H T, Reed P A S . Microstructure effects on high temperature fatigue crack initiation and short crack growth in turbine disc nickel-base superalloy Udimet 720Li[J]. Mater. Sci. Eng., 2007, A448: 67 | [20] | Monajati H, Jahazi M, Bahrami R, et al.The influence of heat treatment conditions on γ' characteristics in Udimet? 720[J]. Mater. Sci. Eng., 2004, A373: 286 | [21] | Radis R, Schaffer M, Albu M, et al.Multimodal size distributions of γ' precipitates during continuous cooling of UDIMET 720 Li[J]. Acta Mater., 2009, 57: 5739 | [22] | Yuan X Y, Chen L Q.Hot deformation at elevated temperature and recrystallization behavior of a high manganese austenitic TWIP steel[J]. Acta Metall. Sin., 2015, 51: 651(袁晓云, 陈礼清. 一种高锰奥氏体TWIP钢的高温热变形与再结晶行为[J]. 金属学报, 2015, 51: 651) | [23] | Chen D D, Lin Y C, Zhou Y, et al.Dislocation substructures evolution and an adaptive-network-based fuzzy inference system model for constitutive behavior of a Ni-based superalloy during hot deformation[J]. J. Alloys Compd., 2017, 708: 938 | [24] | Xu Y, Hu L X, Sun Y.Deformation behaviour and dynamic recrystallization of AZ61 magnesium alloy[J]. J. Alloys Compd., 2013, 580: 262 | [25] | Cao Y, Di H S, Zhang J C, et al.Research on dynamic recrystallization behavior of Incoloy 800H[J]. Acta Metall. Sin., 2012, 48: 1175(曹宇, 邸洪双, 张洁岑等. 800H合金动态再结晶行为研究[J]. 金属学报, 2012, 48: 1175) | [26] | Yin X Q, Park C H, Li Y F, et al.Mechanism of continuous dynamic recrystallization in a 50Ti-47Ni-3Fe shape memory alloy during hot compressive deformation[J]. J. Alloys Compd., 2017, 693: 426 | [27] | Yu J M, Zhang Z M, Wang Q, et al.Dynamic recrystallization behavior of magnesium alloys with LPSO during hot deformation[J]. J. Alloys Compd., 2017, 704: 382 | [28] | Sun Y, Zeng W D, Han Y F, et al.Modeling the correlation between microstructure and the properties of the Ti-6Al-4V alloy based on an artificial neural network[J]. Mater. Sci. Eng., 2011, A528: 8757 | [29] | Ashtiani H R R, Shahsavari P. A comparative study on the phenomenological and artificial neural network models to predict hot deformation behavior of AlCuMgPb alloy[J]. J. Alloys Compd., 2016, 687: 263 | [30] | Sun Y, Zeng W D, Han Y F, et al.Determination of the influence of processing parameters on the mechanical properties of the Ti-6Al-4V alloy using an artificial neural network[J]. Comp. Mater. Sci., 2012, 60: 239 | [31] | Sun Y, Zeng W D, Wang S L, et al.Modeling the constitutive relationship of Ti-22Al-25Nb alloy using artificial neural network[J]. J. Plast. Eng., 2009, 16(3): 126(孙宇, 曾卫东, 王邵丽等. 应用人工神经网络建立Ti-22Al-25Nb合金高温本构关系模型[J]. 塑性工程学报, 2009, 16(3): 126) | [32] | He A, Wang X T, Xie G L, et al.Modified arrhenius-type constitutive model and artificial neural network-based model for constitutive relationship of 316LN stainless steel during hot deformation[J]. J. Iron Steel Res. Int., 2015, 22: 721 | [33] | Peng W W, Zeng W D, Wang Q J, et al.Comparative study on constitutive relationship of as-cast Ti60 titanium alloy during hot deformation based on Arrhenius-type and artificial neural network models[J]. Mater. Des., 2013, 51: 95 | [34] | He G A, Liu F, Huang L, et al.Microstructure evolutions and nucleation mechanisms of dynamic recrystallization of a powder metallurgy Ni-based superalloy during hot compression[J]. Mater. Sci. Eng., 2016, A677: 496 | [35] | Wan Z P, Sun Y, Hu L X, et al.Dynamic softening behavior and microstructural characterization of TiAl-based alloy during hot deformation[J]. Mater. Charact., 2017, 130: 25 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|