Please wait a minute...
金属学报  1984, Vol. 20 Issue (6): 375-484    
  论文 本期目录 | 过刊浏览 |
钛合金热稳定性研究 Ⅰ.Ti_3X相形成的电子浓度规律
李东;刘羽寅;万晓景
中国科学院金属研究所;中国科学院金属研究所;中国科学院金属研究所
ON THE THERMAL STABILITY OF Ti ALLOYS I. The Electron Concentration Rule for Formation of Ti_3X-Phase
LI Dong; LIU Yuyin; WAN Xiaojing (Institute of Metal Research; Academia Sinica; Shenyang)(Manuscript received 4 November; 1983; revised manuscript 29 February;1984)
引用本文:

李东;刘羽寅;万晓景. 钛合金热稳定性研究 Ⅰ.Ti_3X相形成的电子浓度规律[J]. 金属学报, 1984, 20(6): 375-484.
, , . ON THE THERMAL STABILITY OF Ti ALLOYS I. The Electron Concentration Rule for Formation of Ti_3X-Phase[J]. Acta Metall Sin, 1984, 20(6): 375-484.

全文: PDF(2535 KB)  
摘要: 根据Hume Rothery规律和相稳定性与电子结构的关系,对合金元素的原子特性进行考查,发现Ti与Al,Ga,In,Sn,Zr的原子半径和负电性相近。这是合金化的有利因素。因此推断,电子浓度是控制α-Ti_3X相界的主要因素。 对Ti-Al-Ga,Ti-Al-Sn,Ti-Al-Zr,Ti-Al O四个三元合金系的实验表明:Ti_3X相的形成是遵守电子浓度规律的,且合金元素的价电子数是由它们的电子结构决定的。对过渡族元素Ti,Zr价电子数为N_(Ti)=N_(Zr)=2;对非过渡族元素Al,Ga,Sn,O价电子数分别为N_(Al)=N_(Ga)=3(s~2p~1),N_(Sn)=4(s~2p~2),N_o=6(s~2p~4)。Ti_3X相形成的特征电子浓度可表示为(?)_c=∑Nifi=2.12。
Abstract:Based on the Hume-Rothery rules and the connections between phase stability and electron structure, it was noticed that both the atomic radii and electronegativities of Ti with Ti_3X forming elements Al, Ga, In, Sn and Zr are favourable factors for alloying. Under the examination of atomic properties of these elements, it seems to be drawn that the electron concentration is the chief controlling factor for the a-Ti_3X-phase boundary. The investigation was made with four selected ternary alloy systems: Ti-Al-Ga, Ti-Al-Sn, Ti-Al-Zr and Ti-Al-O. The experimental resuits show that the formation of Ti_3X-phase obeys the electron concentration rule, and the valence electron number of the alloying elements depends on their own electronic structures, i.e., N_(Ti)=N_(Zr)=2 for the transition elements Ti and Zr; N_(Al)=N_(Ga)=3(S~2P~1), N_(Sn)=4(S~2P~2) and N_o=6(S~2P~4) for non-transition elements Al, Ga, Sn and O. The characteristic electron concentration for the formation of Ti_3X-phase may be expressed as:
收稿日期: 1984-06-18     
1 Blackburn, M. J., Trans. Metall. Soc. AIME, 239 (1967) , 1200.
2 Anderko, K., Z. Metallk., 49(1958) , 165.
3 Pietrokowsky, P.; Frink, E., Trans. ASM, 49(1957) , 339.
4 Shamblen, C. E., Metall. Trans., 2(1971) , 277.
5 Mendiratta, M. G.; Chakrabarti, A. K.; Roberson, J. A., Metall. Trans., 5 (1974) , 1949.
6 Shamblen, C. E.; Redden, T. K., Metall. Trans., 3 (1972) , 1299.
7 Soltis, P. J., Trans. Metall. Soc. AIME, 233 (1965) , 903.
8 Erdeman, V. J.; Ross, E. W., The Science, Technology and Application of Titanium, Proc. of lst Int. Conf. on Titanium, Eds. Jaffee, R. I.; Promisel, N. E., Pergamon, London, 1970, p. 829.
9 McQuillan, A. D.; Margolin, H.; Collings, E. W., Titanium Science and Technology, Proc. of 2nd Int. Conf. on Titanium, Eds, Jaffee, R. I.; Burte, H. M., Pergamon, London, 1973, p. 969.
10 Smallman R. E., Modern Physical Metal, 3rd ed., Butterworths, London, 1970, p. 140.
11 Jones, H., Proc. R. Soc., 144 (1934) , 225; Proc. Phys. Soc., 49 (1937) , 250.
12 Engel, N., Trans. ASM, 57 (1964) , 610.
13 Hume-Rothery, W.; Irving, H. M.; Williams, R. J. P., Proc. R. Soc., A208(1951) , 431.
14 Fisher, E. S.; Dever, D., Acta Metall., 18 (1970) , 265.
15 Das, D. K.; Rideout, S. P.; Beck, P. A., Trans. AIME, 194 (1952) , 1071.
16 Sagel, K.; Schulz, E.; Zwicker, U., Z. Metallk., 47 (1956) , 529.
17 Ence, E.; Margolin, H., Trans. Metall. Soc. AIME, 221 (1961) , 151.
18 Tsujimoto, T.; Adachi, M., J. Inst. Met., 94 (1966) , 358.
19 Crossley, F, A., Trans. Metall. Soc. AIME, 236 (1966) , 1174.
20 Blackburn, M. J., Trans. Metall. Soc. AIME, 239 (1967) , 1200.
21 #12
22 Blackburn, M. J., ASM Trans. Q., 59 (1966) , 694.
No related articles found!