Please wait a minute...
金属学报  1992, Vol. 28 Issue (4): 5-9    
  论文 本期目录 | 过刊浏览 |
面心立方和体心立方金属的各向同性屈服行为
陈积伟;连建设
吉林工业大学;吉林工业大学
ISOTROPIC YIELD BEHAVIOURS OF FCC AND BCC METALS
CHEN Jiwei;LIAN Jianshe Jilin University of Technology; Changchun
引用本文:

陈积伟;连建设. 面心立方和体心立方金属的各向同性屈服行为[J]. 金属学报, 1992, 28(4): 5-9.
, . ISOTROPIC YIELD BEHAVIOURS OF FCC AND BCC METALS[J]. Acta Metall Sin, 1992, 28(4): 5-9.

全文: PDF(365 KB)  
摘要: 应用TBH理论揭示了在Lequeu等提出的五维应力空间中,各向同性fcc和bcc金属的任意两个切应力构成的屈服轨迹近似地为由主应力构成的π平面的屈服轨迹的内切圆,在此基础上,提出了以HHH屈服函数为基础的,其参数由M_p和τ_c两个微观参数完全确定的解析屈服函数
关键词 晶体学塑性屈服函数立方金属    
Abstract:Isotropic yield surfaces of both fcc and bcc metals have been simulated with theTBH model. Using the five--dimensional stress space proposed recently by Lequeu et al., theyield subsurface on any two of the three shear stresses can be considered approximately as in-scribed circles of their corresponding subsurface on π plane. Based on this concept, the HHHyield function has been transformed into the form where the parameters are uniquely deter-mined by two crystallographic factors: the mean Taylor factor in plane strain (M_p) and thecritical shear stress (τ_c) on slip systems.
Key wordspolycrystalline plasticity    yield function    cubic metals
收稿日期: 1992-04-18     
基金资助:国家自然科学基金
1 Taylor G I. J Inst Met, 1938; 62: 307
2 Bishop J W F. Hill R. Philos Mag, 1951; 42: 414, 1298
3 Lequeu P. Gilormini P, Montheillet F. Bacroix B, Jonas J J. Acta Metall, 1987; 35: 439, 1159
4 Kocks U F, Canova G R. Jonas J J. Acta Metall, 1983; 31: 1243
5 Van Houtte P. Aernoudt E. Z Metallk, 1975; 66: 202
6 Lequeu P, Jonas J J. Metall Trans, 1988; 19A: 105
7 Hill R. Proc R Soc London, 1948; 193A: 281
8 Chin G Y. Mammel W L. Trans Metall Soc AIME, 1969; 245: 1211
9 Bacroix B. Jonas J J, Montheillet F, Skalli A. Acta Metall, 1986; 34: 937
10 Hershey A V. Trans ASME, Ser. E: J Appl Mech, 1954; 76: 241
11 Hosford W F. Trans ASME, Ser. E: J Appl Mech, 1972; 39: 607
12 Hill R. Math Prog Cambridge Philos Soc, 1979; 85: 179
13 Barlat F, Lian J. Int J Plasticity, 1989; 5: 51
14 Lian J, Barlat F, Baudelet B. Int J Plasticity, 1989; 5: 131@
[1] 常松涛, 张芳, 沙玉辉, 左良. 偏析干预下体心立方金属再结晶织构竞争[J]. 金属学报, 2023, 59(8): 1065-1074.
[2] 张哲峰, 李克强, 蔡拓, 李鹏, 张振军, 刘睿, 杨金波, 张鹏. 层错能对面心立方金属形变机制与力学性能的影响[J]. 金属学报, 2023, 59(4): 467-477.
[3] 陈志永; 张新明; 周卓平 . {110}<111>, {112}<111>和{123}<111>多滑移的屈服应力状态[J]. 金属学报, 2003, 39(1): 17-21 .
[4] 苏世忠; 李明哲; 李东平; 高桥宽 . 用有限元多晶体弹塑性模型预测FCC金属冲压变形后的织构和塑性各向异性[J]. 金属学报, 2001, 37(5): 531-536 .