Please wait a minute...
金属学报  2022, Vol. 58 Issue (4): 541-550    DOI: 10.11900/0412.1961.2021.00528
  综述 本期目录 | 过刊浏览 |
复杂场景下的焊接智能制造中的信息感知与控制方法
陈华斌, 陈善本()
上海交通大学 材料科学与工程学院 上海 200240
Key Information Perception and Control Strategy of Intellignet Welding Under Complex Scene
CHEN Huabin, CHEN Shanben()
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

陈华斌, 陈善本. 复杂场景下的焊接智能制造中的信息感知与控制方法[J]. 金属学报, 2022, 58(4): 541-550.
Huabin CHEN, Shanben CHEN. Key Information Perception and Control Strategy of Intellignet Welding Under Complex Scene[J]. Acta Metall Sin, 2022, 58(4): 541-550.

全文: PDF(3016 KB)   HTML
摘要: 

针对机器人自动化焊接设备无法满足复杂焊接场景下的自感知、智能决策以及工艺鲁棒控制等难题,运用人工智能技术模拟经验焊工的观察、知识与行为,实现对焊接制造过程中的多模态信息感知、知识判断与智能化控制等行为功能,提出了智能化机器人焊接关键技术、焊接柔性制造系统的智能建模及其协调控制策略等,形成了焊接智能制造技术与系统的技术构成和理论架构,同时为解决其他材料成形工艺复杂过程的智能制造技术与系统实现提供了可借鉴的科学方法和技术实现途径。

关键词 智能化焊接多源信息知识建模智能控制焊接机器人    
Abstract

The robotic arc welding equipment and automated welding system can not fulfill the requirements in self-sensing, intelligent decision-making,and robust process-controlling in the complex welding environment. Artificial intelligence techniques were used to simulate observation actions, knowledge,and behavior of experienced welders, to realize functions,such as multi-mode information perception, knowledge judgment, and intelligent control during the welding process. Essential techniques in intelligent robotic welding as well as intelligent modeling and its coordinate control strategies of flexible welding manufacturing system were also proposed. These formed the technique,structure,and theoretical framework of intelligent welding manufacturing technique and system. They also provided a scientific method and technical realization to solve problems in intelligent manufacturing techniques and systems of other complex materials forming processes.

Key wordsintelligent welding    multi-source information    knowledge modeling    intelligent control    welding robot
收稿日期: 2021-12-03     
ZTFLH:  TG 409  
基金资助:国家自然科学基金项目(52175351)
作者简介: 陈华斌,男,1977年生,教授,博士
图1  铝合金钨极氩弧焊(TIG)典型熔池图像及特征提取[42]
图2  主动视觉传感焊接熔池图像降噪及轮廓提取[43]
图3  数字图像相关法焊接高温应变及应力原位表征[53]
图4  基于激光传感的机器人自主焊接
图5  基于物联网-多智能体的智能焊接制造系统的体系架构
图6  基于物联网的焊接数据智能管控及质量评价
1 Zhou J, Zhou Y H, Wang B C, et al. Human-cyber-physical systems (HCPSs) in the context of new-generation intelligent manufacturing [J]. Engineering, 2019, 5: 624
2 Wang B C, Hu S J, Sun L, et al. Intelligent welding system technologies: State-of-the-art review and perspectives [J]. J. Manuf. Syst., 2020, 56: 373
3 Zhang G J, Li Y Z. Towards intelligent welding in the context of industry 4.0 [J]. Aeronaut. Manuf. Technol., 2016, (11): 28
3 张广军, 李永哲. 工业4.0语义下智能焊接技术发展综述 [J]. 航空制造技术, 2016, (11): 28
4 David S A, Chen J, Gibson B T, et al. Intelligent weld manufacturing: Role of integrated computational welding engineering [A]. Transactions on Intelligent Welding Manufacturing [M]. Singapore: Springer, 2018: 3
5 Ogbemhe J, Mpofu K. Towards achieving a fully intelligent robotic arc welding: A review [J]. Ind. Robot: Int. J., 2015, 42: 475
6 Jin Z S, Li H C, Jia G Q, et al. Dynamic nonlinear modeling of 3D weld pool surface in GTAW [J]. Robot. Comput. Integr. Manuf., 2016, 39: 1
7 Severson K, Chaiwatanodom P, Braatz R D. Perspectives on process monitoring of industrial systems [J]. Ann. Rev. Cont., 2016, 42: 190
8 Yin S, Ding S X, Xie X C, et al. A review on basic data-driven approaches for industrial process monitoring [J]. IEEE Trans. Ind. Electron., 2014, 61: 6418
9 Wang Q Y, Jiao W H, Zhang Y M. Deep learning-empowered digital twin for visualized weld joint growth monitoring and penetration control [J]. J. Manuf. Sys., 2020, 57: 429
10 Park H, Trautmann M, Tanaka K, et al. Mixing of multiple metal vapours into an arc plasma in gas tungsten arc welding of stainless steel [J]. J. Phys., 2017, 50D: 43LT03
11 Tanaka K, Shigeta M, Tanaka M, et al. Investigation of the bilayer region of metal vapor in a helium tungsten inert gas arc plasma on stainless steel by imaging spectroscopy [J]. J. Phys., 2019, 52D: 354003
12 Wu S J, Gao H M, Zhang W, et al. Analytic weld pool model calibrated by measurements—Part 1: Principles [J]. Weld. J., 2017, 96: 193
13 Wu S J, Gao H M, Zhang W, et al. Analytic weld pool model calibrated by measurements—Part 2: Verification and robustness [J]. Weld. J., 2017, 96: 250
14 Chen C, Lv N, Chen S B. Welding penetration monitoring for pulsed GTAW using visual sensor based on AAM and random forests [J]. J. Manuf. Process, 2021, 63: 152
15 Zhang Z F, Wen G R, Chen S B. Audible sound-based intelligent evaluation for aluminum alloy in robotic pulsed GTAW: Mechanism, feature selection, and defect detection [J]. IEEE Trans. Ind. Inform., 2017, 14: 2973
16 Zhang W J, Zhang Y M. Modeling of human welder response to 3D weld pool surface: Part I—principles [J]. Weld. J., 2012, 91: 310S
17 Chen S B, Lv N. Research evolution on intelligentized technologies for arc welding process [J]. J. Manuf. Process, 2014, 16: 109
18 Liu Y K, Zhang W J, Zhang Y M. Estimation of weld joint penetration under varying GTA pools [J]. Weld. J., 2013, 92: 313S
19 Zhang S Q, Hu S S, Wang Z J. Weld penetration sensing in pulsed gas tungsten arc welding based on arc voltage [J]. J. Mater. Process. Technol., 2016, 229: 520
20 Huang J K, Yang M H, Chen J S, et al. The oscillation of stationary weld pool surface in the GTA welding [J]. J. Mater. Process. Technol., 2018, 256: 57
21 Zhang K, Zhang Y M, Chen J S, et al. Observation and analysis of three-dimensional weld pool oscillation dynamic behaviors [J]. Weld. J., 2017, 96: 143S
22 Coniglio N, Mathieu A, Aubreton O, et al. Plasma effect on weld pool surface reconstruction by shape-from-polarization analysis [J]. Appl. Phys. Lett., 2014, 104: 131603
23 Feng Z, Chen J, Chen Z. Monitoring weld pool surface and penetration using reversed electrode images [J]. Weld. J., 2017, 96: 367S
24 Chen Z Y, Chen J, Feng Z L. Welding penetration prediction with passive vision system [J]. J. Manuf. Process., 2018, 36: 224
25 Tarn J, Huissoon J. Developing psycho-acoustic experiments in gas metal arc welding [A]. IEEE International Conference Mechatronics and Automation, 2005 [C]. Niagara Falls: IEEE, 2005: 1112
26 Asif K, Zhang L, Derrible S, et al. Machine learning model to predict welding quality using air-coupled acoustic emission and weld inputs [J]. J. Intell. Manuf., 2022, 33: 881
27 Wang J F, Chen B, Chen H B, et al. Analysis of arc sound characteristics for gas tungsten argon welding [J]. Sensor Rev., 2009, 29: 240
28 Wang J F, Yu H D, Qian Y Z, et al. Feature extraction in welding penetration monitoring with arc sound signals [J]. Proc. Inst. Mech. Eng., 2011, 225B: 1683
29 Lv N, Fang G, Xu Y L, et al. Real-time monitoring of welding path in pulse metal-inert gas robotic welding using a dual-microphone array [J]. Int. J. Adv. Manuf. Technol., 2017, 90: 2955
30 Wang J F. Study on recognition method of penetration states based on welding sound feature [D]. Shanghai: Shanghai Jiao Tong University, 2009
30 王继锋. 基于焊接声音信号特征的熔透状态识别方法研究 [D]. 上海: 上海交通大学, 2009
31 Song S, Chen H B, Lin T, et al. Penetration state recognition based on the double-sound-sources characteristic of VPPAW and hidden Markov Model [J]. J. Mater. Process. Technol., 2016, 234: 33
32 Wu D, Chen H B, Huang Y M, et al. Monitoring of weld joint penetration during variable polarity plasma arc welding based on the keyhole characteristics and PSO-ANFIS [J]. J. Mater. Process. Technol., 2017, 239: 113
33 Yu H W. Research on dynamic process and defect features of aluminum alloy pulsed GTAW based on the welding arc spectral information [D]. Shanghai: Shanghai Jiao Tong University, 2013
33 余焕伟. 基于电弧光谱信息的铝合金脉冲GTAW焊接动态过程及缺陷特征研究 [D]. 上海: 上海交通大学, 2013
34 Katayama S, Uchiumi S, Mizutani M, et al. Penetration and porosity prevention mechanism in YAG laser-MIG hybrid welding [J]. Weld. Int., 2007, 21: 25
35 Tanaka M, Tashiro S, Tsujimura Y. Visualizations and predictions of welding arcs [J]. Trans JWRI, 2012, 41: 1
36 Liu L M, Hao X F. Study of the effect of low-power pulse laser on arc plasma and magnesium alloy target in hybrid welding by spectral diagnosis technique [J]. J. Phys.. 2008, 41D: 205202
37 Hao X F, Liu L M. Effect of laser pulse on arc plasma and magnesium target in low-power laser/arc hybrid welding [J]. IEEE Trans. Plasma Sci., 2009, 37: 2197
38 Yu H W, Chen H B, Xu Y L, et al. Spectroscopic diagnostics of pulsed gas tungsten arc welding plasma and its effect on weld formation of aluminum-magnesium alloy [J]. Spectrosc. Lett., 2013, 46: 350
39 Otaki S, Matsuida T, Nomura K, et al. In-situ measurement of weld quality during MAG welding using laser ultrasonic [J]. Weld. Int., 2019, 33: 450
40 Feng Y H, Chen Z Y, Wang D L, et al. DeepWelding: A deep learning enhanced approach to GTAW using multisource sensing images [J]. IEEE Trans. Ind. Inform., 2019, 16: 465
41 Wang Q Y, Jiao W H, Yu R, et al. Modeling of human welders' operations in virtual reality human-robot interaction [J]. IEEE Robot. Autom. Lett., 2019, 4: 2958
42 Fan C J. Weld pool characters extraction visual sensing and intelligent control during varied gap aluminum alloy [D]. Shanghai: Shanghai Jiao Tong University, 2008
42 樊重建. 变间隙铝合金脉冲GTAW熔池视觉特征获取及其智能控制研究 [D].上海: 上海交通大学, 2008
43 Jiang Z. Multi-source information representation and penetration prediction and control for robotic TIG welding of aluminum alloy [D]. Shanghai: Shanghai Jiao Tong University, 2020
43 蒋 铮. 铝合金机器人TIG焊多源信息表征及熔透预测控制 [D]. 上海: 上海交通大学, 2020
44 Wu D, Huang Y M, Zhang P L, et al. Visual-acoustic penetration recognition in variable polarity plasma arc welding process using hybrid deep learning approach [J]. IEEE Access, 2020, 8: 120417
45 Wu D, Chen J S, Liu H B, et al. Weld penetration in situ prediction from keyhole dynamic behavior under time-varying VPPAW pools via the OS-ELM model [J]. Int. J. Adv. Manuf. Technol., 2019, 104: 3929
46 Wu D, Huang Y M, Chen H B, et al. VPPAW penetration monitoring based on fusion of visual and acoustic signals using t-SNE and DBN model [J]. Mater. Des., 2017, 123: 1
47 Chen C, Xiao R Q, Chen H B, et al. Arc sound model for pulsed GTAW and recognition of different penetration states [J]. Int. J. Adv. Manuf. Technol., 2020, 108: 3175
48 Chen C, Xiao R Q, Chen H B, et al. Prediction of welding quality characteristics during pulsed GTAW process of aluminum alloy by multisensory fusion and hybrid network model [J]. J. Manuf. Process., 2021, 68: 209
49 Huang Y M, Li S S, Li J H, et al. Spectral diagnosis and defects prediction based on ELM during the GTAW of Al alloys [J]. Measurement, 2019, 136: 405
50 Huang Y M, Zhao D J, Chen H B, et al. Porosity detection in pulsed GTA welding of 5A06 Al alloy through spectral analysis [J]. J. Mater. Process Technol., 2018, 259: 332
51 Huang Y M, Wu D, Zhang Z F, et al. EMD-based pulsed TIG welding process porosity defect detection and defect diagnosis using GA-SVM [J]. J. Mater. Process. Technol., 2017, 239: 92
52 Chen H B, Song Y L, Chen X Q, et al. In situ studies of full-field residual stress mapping of SS304 stainless steel welds using DIC [J]. Int. J. Adv. Manuf. Technol., 2020, 109: 45
53 Song Y L. In situ studies of full field strain and residual stress of welding heat affect zone using digital image correlation [D]. Shanghai: Shanghai Jiao Tong University, 2019
53 宋育林. 数字图像相关法焊接热影响区高温应变原位测量及残余应力表征 [D]. 上海: 上海交通大学, 2019
54 Zhang Z F, Chen H B, Xu Y L, et al. Multisensor-based real-time quality monitoring by means of feature extraction, selection and modeling for Al alloy in arc welding [J]. Mech. Syst. Signal Process., 2015, 60-61: 151
55 Ma H B, Wei S C, Lin T, et al. Mixed logical dynamical model for back bead width prediction of pulsed GTAW process with misalignment [J]. J. Mater. Process. Technol., 2010, 210: 2036
56 Wu D, Chen H B, Huang Y M, et al. Online monitoring and model-free adaptive control of weld penetration in VPPAW based on extreme learning machine [J]. IEEE Trans. Ind. Inform., 2019, 15: 2732
57 Lv F L, Chen H B, Fan C J, et al. A novel control algorithm for weld pool control [J]. Ind. Robot, 2010, 37: 89
58 Ye Z, Fang G, Chen S B, et al. Passive vision based seam tracking system for pulse-MAG welding [J]. Int. J. Adv. Manuf. Technol., 2013, 67: 1987
59 Ye Z, Fang G, Chen S B, et al. A robust algorithm for weld seam extraction based on prior knowledge of weld seam [J]. Sensor Rev., 2013, 33: 125
60 Hou Z, Xu Y L, Xiao R Q, et al. A teaching-free welding method based on laser visual sensing system in robotic GMAW [J]. Int. J. Adv. Manuf. Technol., 2020, 109: 1755
61 Xiao R Q, Xu Y L, Hou Z, et al. An adaptive feature extraction algorithm for multiple typical seam tracking based on vision sensor in robotic arc welding [J]. Sens. Actuators, 2019, 297A: 111533
62 Lin S Y, Yang X Q, Xu A J, et al. Recent advances in intelligentized robotic welding technologies and its application in launch vehicle tank [J]. Aerosp. Shanghai, 2021, 38(3): 8
62 林尚扬, 杨学勤, 徐爱杰 等. 机器人智能化焊接技术发展综述及其在运载火箭贮箱中的应用 [J]. 上海航天, 2021, 38(3): 8
No related articles found!