|
|
复杂场景下的焊接智能制造中的信息感知与控制方法 |
陈华斌, 陈善本( ) |
上海交通大学 材料科学与工程学院 上海 200240 |
|
Key Information Perception and Control Strategy of Intellignet Welding Under Complex Scene |
CHEN Huabin, CHEN Shanben( ) |
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
引用本文:
陈华斌, 陈善本. 复杂场景下的焊接智能制造中的信息感知与控制方法[J]. 金属学报, 2022, 58(4): 541-550.
Huabin CHEN,
Shanben CHEN.
Key Information Perception and Control Strategy of Intellignet Welding Under Complex Scene[J]. Acta Metall Sin, 2022, 58(4): 541-550.
1 |
Zhou J, Zhou Y H, Wang B C, et al. Human-cyber-physical systems (HCPSs) in the context of new-generation intelligent manufacturing [J]. Engineering, 2019, 5: 624
|
2 |
Wang B C, Hu S J, Sun L, et al. Intelligent welding system technologies: State-of-the-art review and perspectives [J]. J. Manuf. Syst., 2020, 56: 373
|
3 |
Zhang G J, Li Y Z. Towards intelligent welding in the context of industry 4.0 [J]. Aeronaut. Manuf. Technol., 2016, (11): 28
|
3 |
张广军, 李永哲. 工业4.0语义下智能焊接技术发展综述 [J]. 航空制造技术, 2016, (11): 28
|
4 |
David S A, Chen J, Gibson B T, et al. Intelligent weld manufacturing: Role of integrated computational welding engineering [A]. Transactions on Intelligent Welding Manufacturing [M]. Singapore: Springer, 2018: 3
|
5 |
Ogbemhe J, Mpofu K. Towards achieving a fully intelligent robotic arc welding: A review [J]. Ind. Robot: Int. J., 2015, 42: 475
|
6 |
Jin Z S, Li H C, Jia G Q, et al. Dynamic nonlinear modeling of 3D weld pool surface in GTAW [J]. Robot. Comput. Integr. Manuf., 2016, 39: 1
|
7 |
Severson K, Chaiwatanodom P, Braatz R D. Perspectives on process monitoring of industrial systems [J]. Ann. Rev. Cont., 2016, 42: 190
|
8 |
Yin S, Ding S X, Xie X C, et al. A review on basic data-driven approaches for industrial process monitoring [J]. IEEE Trans. Ind. Electron., 2014, 61: 6418
|
9 |
Wang Q Y, Jiao W H, Zhang Y M. Deep learning-empowered digital twin for visualized weld joint growth monitoring and penetration control [J]. J. Manuf. Sys., 2020, 57: 429
|
10 |
Park H, Trautmann M, Tanaka K, et al. Mixing of multiple metal vapours into an arc plasma in gas tungsten arc welding of stainless steel [J]. J. Phys., 2017, 50D: 43LT03
|
11 |
Tanaka K, Shigeta M, Tanaka M, et al. Investigation of the bilayer region of metal vapor in a helium tungsten inert gas arc plasma on stainless steel by imaging spectroscopy [J]. J. Phys., 2019, 52D: 354003
|
12 |
Wu S J, Gao H M, Zhang W, et al. Analytic weld pool model calibrated by measurements—Part 1: Principles [J]. Weld. J., 2017, 96: 193
|
13 |
Wu S J, Gao H M, Zhang W, et al. Analytic weld pool model calibrated by measurements—Part 2: Verification and robustness [J]. Weld. J., 2017, 96: 250
|
14 |
Chen C, Lv N, Chen S B. Welding penetration monitoring for pulsed GTAW using visual sensor based on AAM and random forests [J]. J. Manuf. Process, 2021, 63: 152
|
15 |
Zhang Z F, Wen G R, Chen S B. Audible sound-based intelligent evaluation for aluminum alloy in robotic pulsed GTAW: Mechanism, feature selection, and defect detection [J]. IEEE Trans. Ind. Inform., 2017, 14: 2973
|
16 |
Zhang W J, Zhang Y M. Modeling of human welder response to 3D weld pool surface: Part I—principles [J]. Weld. J., 2012, 91: 310S
|
17 |
Chen S B, Lv N. Research evolution on intelligentized technologies for arc welding process [J]. J. Manuf. Process, 2014, 16: 109
|
18 |
Liu Y K, Zhang W J, Zhang Y M. Estimation of weld joint penetration under varying GTA pools [J]. Weld. J., 2013, 92: 313S
|
19 |
Zhang S Q, Hu S S, Wang Z J. Weld penetration sensing in pulsed gas tungsten arc welding based on arc voltage [J]. J. Mater. Process. Technol., 2016, 229: 520
|
20 |
Huang J K, Yang M H, Chen J S, et al. The oscillation of stationary weld pool surface in the GTA welding [J]. J. Mater. Process. Technol., 2018, 256: 57
|
21 |
Zhang K, Zhang Y M, Chen J S, et al. Observation and analysis of three-dimensional weld pool oscillation dynamic behaviors [J]. Weld. J., 2017, 96: 143S
|
22 |
Coniglio N, Mathieu A, Aubreton O, et al. Plasma effect on weld pool surface reconstruction by shape-from-polarization analysis [J]. Appl. Phys. Lett., 2014, 104: 131603
|
23 |
Feng Z, Chen J, Chen Z. Monitoring weld pool surface and penetration using reversed electrode images [J]. Weld. J., 2017, 96: 367S
|
24 |
Chen Z Y, Chen J, Feng Z L. Welding penetration prediction with passive vision system [J]. J. Manuf. Process., 2018, 36: 224
|
25 |
Tarn J, Huissoon J. Developing psycho-acoustic experiments in gas metal arc welding [A]. IEEE International Conference Mechatronics and Automation, 2005 [C]. Niagara Falls: IEEE, 2005: 1112
|
26 |
Asif K, Zhang L, Derrible S, et al. Machine learning model to predict welding quality using air-coupled acoustic emission and weld inputs [J]. J. Intell. Manuf., 2022, 33: 881
|
27 |
Wang J F, Chen B, Chen H B, et al. Analysis of arc sound characteristics for gas tungsten argon welding [J]. Sensor Rev., 2009, 29: 240
|
28 |
Wang J F, Yu H D, Qian Y Z, et al. Feature extraction in welding penetration monitoring with arc sound signals [J]. Proc. Inst. Mech. Eng., 2011, 225B: 1683
|
29 |
Lv N, Fang G, Xu Y L, et al. Real-time monitoring of welding path in pulse metal-inert gas robotic welding using a dual-microphone array [J]. Int. J. Adv. Manuf. Technol., 2017, 90: 2955
|
30 |
Wang J F. Study on recognition method of penetration states based on welding sound feature [D]. Shanghai: Shanghai Jiao Tong University, 2009
|
30 |
王继锋. 基于焊接声音信号特征的熔透状态识别方法研究 [D]. 上海: 上海交通大学, 2009
|
31 |
Song S, Chen H B, Lin T, et al. Penetration state recognition based on the double-sound-sources characteristic of VPPAW and hidden Markov Model [J]. J. Mater. Process. Technol., 2016, 234: 33
|
32 |
Wu D, Chen H B, Huang Y M, et al. Monitoring of weld joint penetration during variable polarity plasma arc welding based on the keyhole characteristics and PSO-ANFIS [J]. J. Mater. Process. Technol., 2017, 239: 113
|
33 |
Yu H W. Research on dynamic process and defect features of aluminum alloy pulsed GTAW based on the welding arc spectral information [D]. Shanghai: Shanghai Jiao Tong University, 2013
|
33 |
余焕伟. 基于电弧光谱信息的铝合金脉冲GTAW焊接动态过程及缺陷特征研究 [D]. 上海: 上海交通大学, 2013
|
34 |
Katayama S, Uchiumi S, Mizutani M, et al. Penetration and porosity prevention mechanism in YAG laser-MIG hybrid welding [J]. Weld. Int., 2007, 21: 25
|
35 |
Tanaka M, Tashiro S, Tsujimura Y. Visualizations and predictions of welding arcs [J]. Trans JWRI, 2012, 41: 1
|
36 |
Liu L M, Hao X F. Study of the effect of low-power pulse laser on arc plasma and magnesium alloy target in hybrid welding by spectral diagnosis technique [J]. J. Phys.. 2008, 41D: 205202
|
37 |
Hao X F, Liu L M. Effect of laser pulse on arc plasma and magnesium target in low-power laser/arc hybrid welding [J]. IEEE Trans. Plasma Sci., 2009, 37: 2197
|
38 |
Yu H W, Chen H B, Xu Y L, et al. Spectroscopic diagnostics of pulsed gas tungsten arc welding plasma and its effect on weld formation of aluminum-magnesium alloy [J]. Spectrosc. Lett., 2013, 46: 350
|
39 |
Otaki S, Matsuida T, Nomura K, et al. In-situ measurement of weld quality during MAG welding using laser ultrasonic [J]. Weld. Int., 2019, 33: 450
|
40 |
Feng Y H, Chen Z Y, Wang D L, et al. DeepWelding: A deep learning enhanced approach to GTAW using multisource sensing images [J]. IEEE Trans. Ind. Inform., 2019, 16: 465
|
41 |
Wang Q Y, Jiao W H, Yu R, et al. Modeling of human welders' operations in virtual reality human-robot interaction [J]. IEEE Robot. Autom. Lett., 2019, 4: 2958
|
42 |
Fan C J. Weld pool characters extraction visual sensing and intelligent control during varied gap aluminum alloy [D]. Shanghai: Shanghai Jiao Tong University, 2008
|
42 |
樊重建. 变间隙铝合金脉冲GTAW熔池视觉特征获取及其智能控制研究 [D].上海: 上海交通大学, 2008
|
43 |
Jiang Z. Multi-source information representation and penetration prediction and control for robotic TIG welding of aluminum alloy [D]. Shanghai: Shanghai Jiao Tong University, 2020
|
43 |
蒋 铮. 铝合金机器人TIG焊多源信息表征及熔透预测控制 [D]. 上海: 上海交通大学, 2020
|
44 |
Wu D, Huang Y M, Zhang P L, et al. Visual-acoustic penetration recognition in variable polarity plasma arc welding process using hybrid deep learning approach [J]. IEEE Access, 2020, 8: 120417
|
45 |
Wu D, Chen J S, Liu H B, et al. Weld penetration in situ prediction from keyhole dynamic behavior under time-varying VPPAW pools via the OS-ELM model [J]. Int. J. Adv. Manuf. Technol., 2019, 104: 3929
|
46 |
Wu D, Huang Y M, Chen H B, et al. VPPAW penetration monitoring based on fusion of visual and acoustic signals using t-SNE and DBN model [J]. Mater. Des., 2017, 123: 1
|
47 |
Chen C, Xiao R Q, Chen H B, et al. Arc sound model for pulsed GTAW and recognition of different penetration states [J]. Int. J. Adv. Manuf. Technol., 2020, 108: 3175
|
48 |
Chen C, Xiao R Q, Chen H B, et al. Prediction of welding quality characteristics during pulsed GTAW process of aluminum alloy by multisensory fusion and hybrid network model [J]. J. Manuf. Process., 2021, 68: 209
|
49 |
Huang Y M, Li S S, Li J H, et al. Spectral diagnosis and defects prediction based on ELM during the GTAW of Al alloys [J]. Measurement, 2019, 136: 405
|
50 |
Huang Y M, Zhao D J, Chen H B, et al. Porosity detection in pulsed GTA welding of 5A06 Al alloy through spectral analysis [J]. J. Mater. Process Technol., 2018, 259: 332
|
51 |
Huang Y M, Wu D, Zhang Z F, et al. EMD-based pulsed TIG welding process porosity defect detection and defect diagnosis using GA-SVM [J]. J. Mater. Process. Technol., 2017, 239: 92
|
52 |
Chen H B, Song Y L, Chen X Q, et al. In situ studies of full-field residual stress mapping of SS304 stainless steel welds using DIC [J]. Int. J. Adv. Manuf. Technol., 2020, 109: 45
|
53 |
Song Y L. In situ studies of full field strain and residual stress of welding heat affect zone using digital image correlation [D]. Shanghai: Shanghai Jiao Tong University, 2019
|
53 |
宋育林. 数字图像相关法焊接热影响区高温应变原位测量及残余应力表征 [D]. 上海: 上海交通大学, 2019
|
54 |
Zhang Z F, Chen H B, Xu Y L, et al. Multisensor-based real-time quality monitoring by means of feature extraction, selection and modeling for Al alloy in arc welding [J]. Mech. Syst. Signal Process., 2015, 60-61: 151
|
55 |
Ma H B, Wei S C, Lin T, et al. Mixed logical dynamical model for back bead width prediction of pulsed GTAW process with misalignment [J]. J. Mater. Process. Technol., 2010, 210: 2036
|
56 |
Wu D, Chen H B, Huang Y M, et al. Online monitoring and model-free adaptive control of weld penetration in VPPAW based on extreme learning machine [J]. IEEE Trans. Ind. Inform., 2019, 15: 2732
|
57 |
Lv F L, Chen H B, Fan C J, et al. A novel control algorithm for weld pool control [J]. Ind. Robot, 2010, 37: 89
|
58 |
Ye Z, Fang G, Chen S B, et al. Passive vision based seam tracking system for pulse-MAG welding [J]. Int. J. Adv. Manuf. Technol., 2013, 67: 1987
|
59 |
Ye Z, Fang G, Chen S B, et al. A robust algorithm for weld seam extraction based on prior knowledge of weld seam [J]. Sensor Rev., 2013, 33: 125
|
60 |
Hou Z, Xu Y L, Xiao R Q, et al. A teaching-free welding method based on laser visual sensing system in robotic GMAW [J]. Int. J. Adv. Manuf. Technol., 2020, 109: 1755
|
61 |
Xiao R Q, Xu Y L, Hou Z, et al. An adaptive feature extraction algorithm for multiple typical seam tracking based on vision sensor in robotic arc welding [J]. Sens. Actuators, 2019, 297A: 111533
|
62 |
Lin S Y, Yang X Q, Xu A J, et al. Recent advances in intelligentized robotic welding technologies and its application in launch vehicle tank [J]. Aerosp. Shanghai, 2021, 38(3): 8
|
62 |
林尚扬, 杨学勤, 徐爱杰 等. 机器人智能化焊接技术发展综述及其在运载火箭贮箱中的应用 [J]. 上海航天, 2021, 38(3): 8
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|