|
|
Inconel 740H合金原位高温拉伸微裂纹萌生扩展研究 |
王晋1, 张跃飞1( ), 马晋遥1, 李吉学2, 张泽2 |
1 北京工业大学固体微结构与性能研究所 北京 100124 2 浙江大学材料科学与工程系 杭州 310058 |
|
Microcrack Nucleation and Propagation Investigation ofInconel 740H Alloy Under In SituHigh Temperature Tensile Test |
Jin WANG1, Yuefei ZHANG1( ), Jinyao MA1, Jixue LI2, Ze ZHANG2 |
1 Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China 2 Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China |
引用本文:
王晋, 张跃飞, 马晋遥, 李吉学, 张泽. Inconel 740H合金原位高温拉伸微裂纹萌生扩展研究[J]. 金属学报, 2017, 53(12): 1627-1635.
Jin WANG,
Yuefei ZHANG,
Jinyao MA,
Jixue LI,
Ze ZHANG.
Microcrack Nucleation and Propagation Investigation ofInconel 740H Alloy Under In SituHigh Temperature Tensile Test[J]. Acta Metall Sin, 2017, 53(12): 1627-1635.
[1] | Patel S J.Introduction to Inconelel alloy 740: An alloy designed for superheater tubing in coal-fired ultra supercritical boilers[J]. Acta Metall. Sin.(Engl. Lett.), 2005, 18: 479 | [2] | Patel S J, deBarbadillo J J, Baker B A, et al. Nickel base superalloys for next generation coal fired AUSC power plants[J]. Proced. Eng., 2013, 55: 246 | [3] | Shingledecker J P, Pharr G M.The role of eta phase formation on the creep strength and ductility of INCONEL alloy 740 at 1023 K (750 ℃)[J]. Metall. Mater. Trans., 2012, 43A: 1902 | [4] | Dang Y Y, Zhao X B, Yuan Y, et al.Predicting long-term creep-rupture property of Inconel 740 and 740H[J]. Mater. High Temp., 2016, 33: 1 | [5] | Chong Y, Liu Z D, Godfrey A, et al.Detrimental effect of cellular precipitation on the creep strength of Inconel 740H[J]. Phil. Mag. Lett., 2013, 93: 688 | [6] | Guo Y, Li T J, Wang C X, et al.Microstructure and phase precipitate behavior of Inconel 740H during aging[J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1598 | [7] | Cowen C J, Danielson P E, Jablonski P D.The microstructural evolution of Inconel alloy 740 during solution treatment, aging, and exposure at 760 ℃[J]. J. Mater. Eng. Perform., 2011, 20: 1078 | [8] | Dang Y Y, Zhao X B, Yin H F, et al.Microstructure stability of Inconel 740H alloy after long term exposure at 750 ℃[J]. J. Mater. Eng., 2016, 44(9): 58(党莹樱, 赵新宝, 尹宏飞等. Inconel 740H合金750 ℃长期时效后的组织稳定性[J]. 材料工程, 2016, 44(9): 58) | [9] | Fu R, Lin F S, Zhao S Q, et al.Influence of strengthening elements on precipitation of thermodynamic equilibrium phases in Inconel alloy 740H[J]. J. Chin. Soc. Power Eng., 2013, 33: 405(符锐, 林富生, 赵双群等. Inconel 740H主要强化元素对热力学平衡相析出行为的影响[J]. 动力工程学报, 2013, 33: 405) | [10] | Guo Y, Li T J, Wang C X, et al.Microstructure and phase precipitate behavior of Inconel 740H during aging[J]. Trans. Nonferrous. Met. Soc. China, 2016, 26: 1598 | [11] | Tan Y, Liao J, Li J Y, et al.Microstructure evolution and microhardness of Inconel 740 Alloy in different heat-treatment conditions prepared by electron beam melting[J]. J. Mater. Eng., 2015, 43(4): 19(谭毅, 廖娇, 李佳艳等. 电子束熔炼Inconel 740合金不同热处理状态下的组织演变与显微硬度[J]. 材料工程, 2015, 43(4): 19) | [12] | Xie X S, Zhao S Q, Dong J X, et al.Structural stability and improvement of Inconel alloy 740 for ultra supercritical power plants[J]. J. Chin. Soc. Power Eng., 2011, 31: 638(谢锡善, 赵双群, 董建新等. 超超临界电站用Inconel 740镍基合金的组织稳定性及其改型研究[J]. 动力工程学报, 2011, 31: 638) | [13] | Zhang H J, Zhou R C, Hou S F, et al.Study on microstructure stability of Inconel 740 for advanced ultra supercritical unit[J]. Proc. CSEE, 2011, 31(8): 108(张红军, 周荣灿, 侯淑芳等. 先进超超临界机组用Inconel 740合金的组织稳定性研究[J]. 中国电机工程学报, 2011, 31(8): 108) | [14] | Shingledecker J P, Evans N D, Pharr G M.Influences of composition and grain size on creep-rupture behavior of Inconel? alloy 740[J]. Mater. Sci. Eng., 2013, A578: 277 | [15] | Kontis P, Alabort E, Barba D, et al.On the role of boron on improving ductility in a new polycrystalline superalloy[J]. Acta Mater., 2017, 124: 489 | [16] | Di Martino S F, Faulkner R G, Hogg S C. Characterisation of microstructure and creep predictions of alloy IN740 for ultrasupercritical power plants[J]. Mater. Sci. Technol., 2015, 31: 48 | [17] | Jiang H, Dong J X, Zhang M C, et al.Oxidation behavior and mechanism of Inconel 740H alloy for advanced ultra-supercritical power plants between 1050 and 1170 ℃[J]. Oxid. Met., 2015, 84: 61 | [18] | Lu J T, Yang Z, Xu S Q, et al.High temperature oxidation behavior of Inconel alloy 740H in pure steam[J]. Mater. Mech. Eng., 2015, 39(10): 37(鲁金涛, 杨珍, 徐松乾等. Inconel 740H合金在纯水蒸气环境中的高温氧化行为[J]. 机械工程材料, 2015, 39(10): 37) | [19] | Lu X D, Du J H, Deng Q.In situ observation of high temperature tensile deformation and low cycle fatigue response in a nickel-base superalloy[J]. Mater. Sci. Eng., 2013, A588: 411 | [20] | Torres E A, Ramírez A J.In situ scanning electron microscopy[J]. Sci. Technol. Weld. Join., 2011, 16: 68 | [21] | Chakkedath A, Boehlert C J.In situ scanning electron microscopy observations of contraction twinning and double twinning in extruded Mg-1Mn (wt.%)[J]. JOM, 2015, 67: 1748 | [22] | Mishra R, Kubic R.In situ EBSD of microstructure evolution during deformation[J]. Microsc. Microanal., 2008, 14(suppl.2): 552 | [23] | Tarzimoghadam Z, Ponge D, Kl?wer J, et al.Hydrogen-assisted failure in Ni-based superalloy 718 studied under in situ hydrogen charging: The role of localized deformation in crack propagation[J]. Acta Mater., 2017, 128: 365 | [24] | Lischewski I, Kirch D M, Ziemons A, et al.Investigation of the α-γ-α phase transformation in steel: High-temperature in situ EBSD measurements[J]. Texture Stress Microstruct., 2008, 2008: 294508 | [25] | Summers W D, Alabort E, Kontis P, et al.In-situ high-temperature tensile testing of a polycrystalline nickel-based superalloy[J]. Mater. High Temp., 2016, 33: 338 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|