Please wait a minute...
金属学报  2009, Vol. 45 Issue (5): 541-546    
  论文 本期目录 | 过刊浏览 |
N18锆合金氢致裂纹延迟开裂临界温度研究
孙超1;谭军1;应诗浩1;李聪2 ;彭倩1;赵素琼1
1. 中国核动力研究设计院核燃料及材料国家重点实验室; 成都 610041
2. 国核工程有限公司; 上海 200233
STUDY OF THE CRITICAL TEMPERATURES FOR DELAYED HYDRIDE CRACKING IN N18 ZIRCONIUM ALLOY
SUN Chao 1; TAN Jun1; YING Shihao1; LI Cong2; PENG Qian1; ZHAO Suqiong1
引用本文:

孙超 谭军 应诗浩 李聪 彭倩 赵素琼. N18锆合金氢致裂纹延迟开裂临界温度研究[J]. 金属学报, 2009, 45(5): 541-546.
, , , , . STUDY OF THE CRITICAL TEMPERATURES FOR DELAYED HYDRIDE CRACKING IN N18 ZIRCONIUM ALLOY[J]. Acta Metall Sin, 2009, 45(5): 541-546.

全文: PDF(662 KB)  
摘要: 

研究了N18锆合金(Zr--1Sn--0.3Nb--0.3Fe--0.1Cr)发生氢致延迟开裂(DHC)临界最大开裂温度(Tc)和临界最小止裂温度(Th)随氢含量的变化规律; 同时对裂纹尖端偏聚氢含量及静水应力和发生DHC的临界氢含量进行了理论分析, 建立理论模型对临界温度进行理论计算. 结果表明: N18合金发生氢致延迟开裂的临界温度介于相同氢含量下溶解固溶温度与析出固溶温度之间, 且最大开裂温度小于最小止裂温度, 计算的临界温度值与实验值相当吻合, 因此该理论模型能够真实反映N18锆合金的氢致延迟开裂的物理过程.

关键词 N18锆合金氢致延迟开裂临界温度    
Abstract

Zirconium alloys are used extensively in nuclear reactor cores. During their service a part of hydrogen produced through the corrosion reaction of Zr with hot coolant is absorbed by materials. Hydride induced embrittlement significantly influences the in–service performance of the Zr–alloy components. Delayed hydride cracking (DHC) is a localized form of hydride embrittlement, consequently, hydrogen atoms in the solid solution will diffuse into this region ahead of the crack tip subjected to a triaxial state of stress, which may lower the chemical potential of the region. Once the hydrogen concentration in this region reaches the terminal solid solubility (TSS), hydrides will start to form and grow. When the hydrides at the crack tip reach a critical size, the main crack will propagate through this hydrided region. The crack front finally is arrested at the end of the hydrided region by the ductile zirconium matrix, and the whole process repeats itself.
        Most of the investigations on DHC in zirconium alloys are focused on Zr–Nb alloys. Few literatures were found on the subject of DHC in Zr–Sn alloys. The purpose of the present study was to investigate critical temperature for initiating and arresting delayed hydride cracking in Zr–Sn–Nb alloy.
        A critical temperature for DHC study was carried out to determine the critical temperature for initiating and arresting in N18 zirconium alloy (Zr–Sn–Nb alloy). For a given hydrogen concentration of a specimen, the two critical temperatures were observed—a DHC initiation temperature, Tc, at which DHC would initiate when approaching the test temperature from above the terminal solid solubility (Cd) temperature in hydride dissolution and a DHC arrest temperature, Th, obtained by heating the same specimen from Tc after DHC had started. Tc slightly below Th. Both Tc and Th fall below the dissolution solvus temperature and above the precipitation solvus temperature. A theoretical analysis was carried out to quantitatively determine the hydrogen concentration limit and these critical temperatures using the method of Dutton and Plus, a key assumption in the method is that, while the local crack tip stress concentration causes a local enhancement of the hydrogen concentration in solution, the hydride precipitation solvus is unaffected by stress. Good agreements are obtained between measured and predicted values of critical temperatures, which support the Dutton--Plus theory.

Key wordsN18 zirconium alloy    delayed hydride cracking    critical temperature
收稿日期: 2008-10-08     
ZTFLH: 

TF777.1

 
基金资助:

国家自然科学基金资助项目50601024

作者简介: 孙超, 男, 1981年生, 助理研究员, 博士生

[1] Yang W D. Nuclear Reactor Material. Beijing: AtomEnergy Press, 2000: 277
(杨文斗. 反应堆材料学. 北京: 原子能出版社, 2000: 277)
[2] Kim Y S, Ahn S B, Cheong Y M. J Alloys Compd, 2007; 429: 221
[3] Shmakov A A, Singh R N, Yan D, Eadie R L, Matvienko Y G. Comput Mater Sci, 2007; 39: 237
[4] Kim S S, Kwon S C, Kim Y S. J Nuclear Mater, 1999; 273: 52
[5] Hui W J, Dong H, Weng Y Q, Shi J, Nie Y H, Chu Z M,Chen W B. Acta Metall Sin, 2004; 40: 561
(惠卫军, 董 瀚, 翁宇庆, 时捷, 聂义宏, 褚作明, 陈蕴博. 金属学报, 2004; 40: 561)
[6] Pan C, Li Z B, Tian Z L, Liang D T, Chu W Y, Qiao L J.J Iron Steel Res, 2000; 12 (Suppl.): 65
(潘 川, 李正邦, 田志凌, 梁东图, 褚武扬, 乔利杰. 钢铁研究学报, 2000; 12 (增刊): 65)
[7] Pan C, Li Z B,Liang D T, Tian Z L, Chu W Y, Qiao L J. Acta Metall Sin, 2001; 37: 296
(潘川, 李正邦, 梁东图, 田志凌, 褚武扬, 乔利杰. 金属学报, 2001; 37: 296)
[8] Gao K W, Wang Y B, Qiao L J, Chu W Y. Sci Chin, 1999;29E: 289
(高克玮, 王燕斌, 乔利杰, 褚武扬. 中国科学, 1999; 29E: 289)
[9] Zhang Y, Chu W Y, Yuan R Z, Wang Y B, Ou Yang S X, Xiao J M. Acta Metall Sin, 1995; 31: 406
(张 跃, 褚武扬, 袁润章, 王燕斌, 欧阳世翕, 肖纪美. 金属学报, 1995; 31: 406)
[10] Meng X, Chen C H, Yao X J, Shi C Y, Wang Y J. Trans Chin Weld Inst, 2002; 23: 21
(孟 鑫, 陈春焕, 姚向军, 史春元, 王亚军. 焊接学报, 2002; 23: 21)
[11] He J Y, Gao K W, Su Y J, Qiao L J, Chu W Y. Acta Metall Sin, 2004; 40: 342
(何健英, 高克玮, 宿彦京, 乔利杰, 褚武扬. 金属学报, 2004; 40: 342)
[12] Liu J Z. Nuclear Structure Materials. Beijing: Chemistry Industry Press, 2007: 143
(刘建章. 核结构材料. 北京: 化学工业出版社, 2007: 143)
[13] Tang J R. Chin J Nuclear Sci Eng, 2003; 23: 266
(唐炯然. 核科学与工程, 2003; 23: 266)
[14] Une K, Ishimoto S. J Nuclear Mater, 2003; 322: 66
[15] Dutton R, Nuttall K, Plus M P, Simpson L A. Metall Trans, 1977; 8A: 1553
[16] Schofield J S, Darby E C, Gee C F. Zirconium in the Nuclear Industry: Thirteenth International Symposium, West Conshohocken: ASTM International, 2002: 339
[17] Shi S Q, Shek G K, Puls M P. J Nuclear Mater, 1995; 218:189

[1] 孙超 谭军 应诗浩 李聪 彭倩 赵素琼. 辐照后N18锆合金氢致延迟开裂临界温度预测[J]. 金属学报, 2010, 46(7): 805-809.
[2] 汪涛; 鲁玉祥; 祝美丽; 张俊善; 季世军 . 热爆合成TiAl3临界温度判据的DSC研究[J]. 金属学报, 2001, 37(4): 377-380 .
[3] 毛大立;伊藤喜久男;和田仁. 快速加热和冷却法制备的极细多芯Nb_3A1线材的超导特性[J]. 金属学报, 1998, 34(7): 735-741.
[4] 周邦新;郑斯奎;汪顺新. Zr-2合金中应力及应变诱发氢化锆析出过程的电子显微镜原位研究[J]. 金属学报, 1989, 25(3): 34-39.