Please wait a minute...
金属学报  2008, Vol. 44 Issue (7): 769-774     
  论文 本期目录 | 过刊浏览 |
基于MacPherson-Srolovitz 拓扑依赖速率方程的三维晶粒尺寸分布研究
王浩;刘国权
北京科技大学材料科学与工程学院新金属材料国家重点实验室
STUDY OF 3D QUASI--STATIONARY GRAIN SIZE DISTRIBUTION DERIVED FROM MACPHERSON—SROLOVITZ TOPOLOGY--RELATED GRAIN GROWTH RATE EQUATION
;
引用本文:

王浩; 刘国权 . 基于MacPherson-Srolovitz 拓扑依赖速率方程的三维晶粒尺寸分布研究[J]. 金属学报, 2008, 44(7): 769-774 .
, . STUDY OF 3D QUASI--STATIONARY GRAIN SIZE DISTRIBUTION DERIVED FROM MACPHERSON—SROLOVITZ TOPOLOGY--RELATED GRAIN GROWTH RATE EQUATION[J]. Acta Metall Sin, 2008, 44(7): 769-774 .

全文: PDF(485 KB)  
摘要: 以MacPherson-Srolovitz提出的三维个体晶粒长大拓扑依赖速率方程以及三维晶粒 组织的晶粒尺寸--晶粒面数间的抛物线型统计关系为基础, 导出了相应的描述三维准稳态晶 粒尺寸分布的函数族. 采用纯Fe实验数据以及顶点法、基元演化法、相场模型和Monte Carlo法进行了验证, 结果表明, 函数族中峰值左偏的函数适合三维准稳态晶粒尺寸分布的定量表 述. 将该函数与Liu等提出的2种三维准稳态晶粒尺寸分布函数进行的对比表明: 此3种函数的解析表达形式有所不同, 但其曲线图在一定条件下相互吻合. 此外, MacPherson--Srolovitz三维拓扑依赖速率方程、Hillert三维速率方程及 Yu--Liu三维速率方程尽管表达形式不同均能较好地反映三维正常晶粒长大的动力学规律.
关键词 三维晶粒长大准稳态晶粒尺寸分布    
Abstract:Based on a new three-dimensional topology-related grain growth rate equation proposed recently by MacPherson and Srolovitz, a set of analytical quasi-stationary grain size distributions were obtained. One of such distribution functions can be used to describe satisfactorily the three-dimensional quasi-stationary grain size distribution obtained from experimental measurement results for pure iron by serial sectioning, and those obtained from computer simulations by vertex method, surface evolver method, phase-field method, Monte Carlo method with Potts model. The corresponding grain size distribution curve is very similar with those of available theoretical quasi-stationary grain size distributions in literature.
Key wordsgrain growth    grain size distribution    quasi-stationary    computer simulation
收稿日期: 2007-09-24     
ZTFLH:  TG111  
[1]Hillert M.Acta Metall,1965;13:227
[2]Atkinson H V.Acta Metall,1988;36:469
[3]Mullins W W.J Appl Phys,1956;27:900
[4]Yu H B.Doctorate Dissertation,University of Science and Technology Beijing,1997 (于海波.北京科技大学博士学位论文,1997)
[5]Yu H B,Liu G Q.China Sci Bull,1996;41:2000 (于海波,刘国权.科学通报,1996;41:2000)
[6]Liu G Q,Song X Y,Yu H B,Gu N J.Acta Metall Sin, 1999;35:245 (刘国权,宋晓艳,于海波,谷南驹.金属学报,1999;35:245)
[7]Wang C,Liu G Q,Yu H B.Acta Metall Sin,2004;40: 1233 (王超,刘国权,于海波.金属学报,2004;40:1233)
[8]MacPherson R D,Srolovitz D J.Nature,2007;446:1053
[9]Hilgenfeldt S,Kraynik A M,Koehler S A,Stone H A.Phys Rev Left,2001;86:2685
[10]Hilgenfeldt S,Kraynik A M,Reinelt D A,Sulliwan J M. Europhys Left,2004;67:484
[11]Glicksman M E.Philos Mag,2005;85:3
[12]Rios P R,Glicksman M E.Acta Mater,2006;54:1041
[13]Kinderlehrer D.Nature,2007;446:995
[14]Wang H,Liu G Q.Acta Metall Sin,2008;44:13 (王浩,刘国权.金属学报,2008;44:13)
[15]Brown L C.Acta Metall,1989;37:71
[16]Coughlan S D,Fortes M A.Scr Metall Mater,1993;28: 1471
[17]Zhang C,Suzuki A,Ishimaru T,Enomoto M.Metall Mater Trans,2004;35A:1927
[18]Weygand D,Brechet Y,Lepinoux J,Gust W.Philos Mag, 1999;79B:703
[19]Wakai F,Enomoto N,Ogawa H.Acta Mater,2000;48: 1297
[20]Krill C E,Chen L Q.Acta Mater,2002;50:3057
[21]Wang H,Liu G Q,Qin X G.J Univ Sci Technol Beijing, in press (王浩,刘国权,秦湘阁.北京科技大学学报,待发表)
[22]Wang C,Liu G Q.Sci China,2004;47E:112
[23]Rios P R.Scr Mater,1999;40:665
[24]Rios P R.Scr Mater,1999;41:1283
[25]Rios P R.Scr Mater,2006;54:1633
[26]Wang C,Liu G Q,Wang G F,Xue W B.Mater Sci Eng, 2007;A454—455:547
[1] 王浩; 刘国权 . 凸形多面体个体晶粒的三维von Neumann准确方程[J]. 金属学报, 2008, 44(11): 1332-1334 .
[2] 王浩; 刘国权; 秦湘阁 . 三维晶粒长大速率方程的大尺度Potts模型Monte Carlo仿真验证[J]. 金属学报, 2008, 44(1): 13-18 .
[3] 宋晓艳; 刘国权 . 第二相粒子含量对基体晶粒长大影响的计算机仿真研究[J]. 金属学报, 2000, 36(6): 592-596 .