Please wait a minute...
金属学报  2007, Vol. 43 Issue (5): 477-481     
  论文 本期目录 | 过刊浏览 |
高硼铁基合金在不同铸型中凝固组织与力学性能的影响
刘仲礼;李言祥;陈祥;胡开华
Effect of Solidification Condition on Structure and Properties of High Boron Iron-Base Alloy
;;;
引用本文:

刘仲礼; 李言祥; 陈祥; 胡开华 . 高硼铁基合金在不同铸型中凝固组织与力学性能的影响[J]. 金属学报, 2007, 43(5): 477-481 .
, , , . Effect of Solidification Condition on Structure and Properties of High Boron Iron-Base Alloy[J]. Acta Metall Sin, 2007, 43(5): 477-481 .

全文: PDF(467 KB)  
摘要: 高硼铁基合金是一种以硼化物为耐磨相的新型耐磨材料。在铸态条件下,其组织由基体和硼化物组成。基体随着添加元素的种类和数量不同而有所不同,硼化物在组织中呈连续网状分布。高硼铁基合金熔体在金属模和砂模不同凝固条件时,奥氏体初晶晶粒随冷却速度增加而减小,硼化物形态发生较大变化;热处理后,砂模铸造的试样,硼化物形态变化不大,而金属模铸造的试样硼化物粒化,其冲击韧度提高了60%。
关键词 高硼铁基合金硼化物凝固条件    
Abstract:High boron iron-base alloy is a new kind of wear-resistant material, which takes borides as wear-resistant phases. In structure, matrixes and borides were included in as-cast condition and the matrixes were changed with different alloying elements and quantity. Borides were distributed in the shape of continuous net in the structure of high boron iron-base alloy. When the melt was solidified in metal mould and sand mould respectively, the grain size of austenitic primary crystal decreases with the cooling rate increase. In addition, the morphology of borides was changed greatly. After heat treatment, borides of samples made of sand mould were changed little, otherwise, borides of samples made of metal mould were changed to granulation shape and the impact toughness was increased by 60%..
Key wordshigh boron iron-base alloy    borides    solidification condition
收稿日期: 2006-09-01     
ZTFLH:  TG113.22  
[1] Guo C Q, Gao S Z. Foundry, 2004; 53: 761 (郭长庆,高守忠.铸造,2004;53:761)
[2] Gol'dshtein Y E, Mizin V G. Met Sci Heat Treat, 1989; 30: 479
[3] Egorov E D, Sapozhnikov Yu L, Shakhnazarov Yu V. Met Sci Heat Treat, 1989; 31: 387
[4] Lorinczi J, Kralik G, Kovaces M, Horvath A. Mater Sci Forum, 2003; 414-415: 267
[5] Baarman M H. Scand J Metall, 1998; 27: 157
[6] Okita T, Wolfer W G, Garner F A, Sekimura N. J Nucl Mater, 2004; 329-333: 1013
[7] Middleham T H, Rait J R, Colbeck E W. J Iron Steel Inst, 1957; 187(1): 1
[8] Llewellyn D T. Ironmaking Steelmaking, 1993; 20: 338
[9] Taylor K A, Hansen S S. Metall Trans, 1990; 21A: 1706
[10] Wang X M, He X L. ISIJ Int, 2002; 42(Suppl.): 38
[11] The First Steel Works of Benxi Steel Corp. Boron Steel. Beijing: Metallurgical Industry Press, 1977: 2 (本溪钢铁公司第一炼钢厂.硼钢.北京:冶金工业出版社,1977: 2)
[12] Ren Y H. Spec Steel, 1992; 13(5): 57 (任元和.特殊钢,1992;13(5):57)
[13] Abenojar J, Velasco F, Martinez M A. J Mater Process Technol, 2003; 143-144: 28
[14] Palumbo M, Cacciamani G, Bosco E, Baricco M. Inter- metallics, 2003; 11: 1294
[15] Yang C L, Yang G C, Liu F, Chen Y Z, Liu N, Chen D, Zhou Y H. Physica, 2006; 373B: 136L
[1] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[2] 马秀良, 胡肖兵. 高温合金中硼化物精细结构的高空间分辨电子显微学研究[J]. 金属学报, 2018, 54(11): 1503-1524.
[3] 丁贤飞,刘东方,郑运荣,冯强. B微合金化对HK40合金铸造疏松的影响[J]. 金属学报, 2015, 51(9): 1121-1128.
[4] 杨莉莉 郑立静 肖志霞 闫洁 张虎. 抽拉速率对定向凝固Ti-47Al-2Cr-2Nb-0.8B合金组织的影响[J]. 金属学报, 2010, 46(7): 879-884.
[5] 符寒光; 蒋志强 . 耐磨铸造Fe-B-C合金的研究[J]. 金属学报, 2006, 42(5): 545-548 .
[6] 胡坚;林一坚;许嘉龙;张士勋. Nb对液态激冷Fe_(70)Cr_(18)Mo_2B_9Si_1合金组织及性能的影响[J]. 金属学报, 1993, 29(7): 85-88.
[7] 蒋百灵;雷廷权. 渗硼层生长的控制因素及其动力学过程分析[J]. 金属学报, 1991, 27(1): 11-15.
[8] 蒋百灵;雷廷权;刘威;崔约贤. 20钢渗硼过程中硼化物形核和生长的TEM观察及室温形变的影响[J]. 金属学报, 1990, 26(2): 41-45.