Please wait a minute...
金属学报  2006, Vol. 42 Issue (7): 727-732     
  论文 本期目录 | 过刊浏览 |
锂离子电池中纳米Cu--Sn合金负极材料的制备与性能研究
任建国; 何向明;姜长印;万春荣
清华大学核能与新能源技术研究院材料化学实验室; 北京 102201
Preparation and Property of Nanometer Cu--Sn Alloy Anode Material for Lithium--Ion Batteries
REN Jianguo; HE Xiangming; JIANG Changyin; WAN Chunrong
Materials Chemistry Laboratory; Institute of Nuclear and New Energy Technology; Tsinghua University; Beijing 102201
引用本文:

任建国; 何向明; 姜长印; 万春荣 . 锂离子电池中纳米Cu--Sn合金负极材料的制备与性能研究[J]. 金属学报, 2006, 42(7): 727-732 .
, , , . Preparation and Property of Nanometer Cu--Sn Alloy Anode Material for Lithium--Ion Batteries[J]. Acta Metall Sin, 2006, 42(7): 727-732 .

全文: PDF(827 KB)  
摘要: 将反相微乳液工艺用于制备纳米储锂合金,成功地制备出了具有无定形结构的铜锡合金纳米颗粒,避免了电极的粉化问题,改善了合金负极的循环性能。但纳米合金表面SEI膜的成膜反应造成了较大的不可逆容量。纳米颗粒之间的接触电阻导致电极导电性较差。实验证明,纳米铜锡合金的颗粒尺寸与电极中导电剂含量的匹配问题对电极的电化学性能有较大的影响,当导电剂含量为40%时,粒径范围在50-60nm的铜锡合金具有最佳的电化学性能。
关键词 锂离子电池铜锡合金微乳液负极    
Abstract:A reverse microemulsion technique was applied to prepare nanometer lithium storage alloy. Nanometer particles of copper-tin alloy with amorphous structures were successfully prepared. Because the electrode pulverization problem can be relieved by its small particle size, nanometer copper-tin alloy anode had a good cycle performance. However, a great irreversible capacity was caused by the formation of a SEI layer on the surface of nanometer alloy and the contact resistance between nanometer particles resulted in the poor electric conductivity. It is proved by experiments that the match of particle size and conductive agent content has a great impact on the electrochemical performance of the nanometer copper-tin alloy anode. When the conductive agent content increased to 40%, the nanometer copper-tin alloy with particle size of 50-60nm presented the best performance.
Key wordslithium-ion batteries    copper-tin alloy    microemulsion    anode
收稿日期: 2005-10-13     
ZTFLH:  TM911  
[1] Wolfenstine J, Campos S,Foster D. Power Sour, 2002;109: 230
[2] Ren J G, Wang K, Pu W H. Prog Chem, 2005; 17: 597 (任建国,王科,蒲薇华.化学进展,2005;17:597)
[3] Pu W H, Ren J G, Wan C R. J Inorg Mater, 2004; 19: 86 (蒲薇华,任建国,万春荣.无机材料学报,2004;19:86)
[4] Pu W H, He X M,Ren J G.Electrochim Acta, 2005; 50:4140
[5] Ren J G, Pu W H, He X M. J. Mater Sci Technol, 2005;21: 770
[6] Kim D G, Kim H, Sohn H J. J Power Sour,2002;104:221
[7] Zhang Y, Fu Z W,Qin Q Z.Electrochem Commun, 2004;6: 484
[8] Yong W, Lee J Y, Chen B H. J Electrochem Soc, 2004;151: A563
[9] Wang G X, Sun L,Bradhurst D H. J Alloys Compd, 2000;299(1-2): L12
[10] Mi C H, Zhang X G, Cao G S. J Inorg Mater, 2003; 19:283 (米常焕,张校刚,曹高邵.无机材料学报, 2003;19:283)
[11] Ren J G. PhD Thesis, Tsinghua University, Beijing, 2005 (任建国.清华大学博士学位论文,北京,2005)
[1] 朱敏, 欧阳柳章. 镁基储氢合金动力学调控及电化学性能[J]. 金属学报, 2021, 57(11): 1416-1428.
[2] 朱敏, 鲁忠臣, 胡仁宗, 欧阳柳章. 介质阻挡放电等离子体辅助球磨及其在材料制备中的应用*[J]. 金属学报, 2016, 52(10): 1239-1248.
[3] 杨绍斌,沈丁,李强. Sn0.35-0.5xCo0.35-0.5xZnxC0.30复合材料的制备及电化学性能[J]. 金属学报, 2010, 46(1): 6-12.
[4] 李昌明; 黄启明; 张仁元; 李伟善; 赵灵智; 胡社军 . 电沉积制备的两种形貌Sn薄膜锂离子嵌入电极性能的比较[J]. 金属学报, 2007, 43(5): 515-520 .
[5] 刘国强; 徐宁; 曾潮流; 杨柯 . 锂离子电池正极材料LiCo1-xNixO2的制备和性能[J]. 金属学报, 2003, 39(2): 209-212 .
[6] 彭斌; 陈振华; 黄可龙; 黄培云 . 锂离子电池正极材料非计量氧化锂锰的缺陷模型[J]. 金属学报, 1999, 35(7): 773-776 .