Please wait a minute...
金属学报  2004, Vol. 40 Issue (5): 546-550     
  论文 本期目录 | 过刊浏览 |
软接触结晶器电磁连铸保护渣道的动态压力
雷作胜; 任忠鸣; 阎勇刚; 邓康
上海大学上海市钢铁冶金新技术应用开发重点实验室; 上海 200072
Mold Flux Channel Dynamic Pressure in Electromagnetic Continuous Casting
LEI Zuosheng; REN Zhongming; YAN Yonggang; DENG Kang
Shanghai Enhanced Laboratory of Ferro-Metallurgy; Shanghai University; Shanghai 200072
引用本文:

雷作胜; 任忠鸣; 阎勇刚; 邓康 . 软接触结晶器电磁连铸保护渣道的动态压力[J]. 金属学报, 2004, 40(5): 546-550 .
, , , . Mold Flux Channel Dynamic Pressure in Electromagnetic Continuous Casting[J]. Acta Metall Sin, 2004, 40(5): 546-550 .

全文: PDF(5020 KB)  
摘要: 通过模型实验, 测量了在不同强度高频电磁场作用下液态金属弯月面形状, 计算了保护渣道宽度及在结晶器振动一个周期内保护渣道动态压力变化情况. 结果表明, 高频电磁场能够显著减小保护渣道内动态压力的变化, 这是软接触结晶器电磁连铸技术改善铸坯表面质量的一个可能机理. 计算还表明, 磁场强度的增加并不能无限制地减小保护渣道内动态压力, 为获得最佳的铸坯表面质量, 存在一个最合适的磁感应强度.
关键词 电磁连铸 保护渣道 动态压力     
Abstract:Molten metal meniscus profile and mold flux channel width are measured under high frequency magnetic field with different intensities by model experiments, then the dynamic pressure in mold flux channel is calculated during one mold oscillation period. It is found that the high frequency magnetic field can decrease the dynamic pressure greatly, which may be one possible mechanism of improving the billets surface quality by soft-contact mold electromagnetic continuous casting. According to the calculation, the mold flux channel dynamic pressure can not be decreased unlimitedly by increasing magnetic flux density, there must be a most appropriate magnetic flux density in order to get best billet surface quality.
Key wordselectromagnetic continuous casting    mold flux channel    dynamic pressure
收稿日期: 2003-05-29     
ZTFLH:  TG249.7  
[1] Asai S. Tetsu Hagané, 1989: 75:32(浅井 滋生.铁钢,1989:75:32)
[2] Li T J, Sassa K, Asai S. ISIJ Int, 1996; 36:410
[3] Ren Z M, Dong H F, Dent K, Jiang G C. ISIJ Int, 2001; 41:981
[4] Na X Z, Zhang X Z, Qiu S T, Can Y. Acta Metall Sin, 2002; 38:105(那贤昭,张兴中,仇圣桃,干勇.金属学报,2002;38:105)
[5] Toh T, Takeuchi E, Hojo M, Kawai H, Matsumura S. ISIJ Int, 1997; 37:1112
[6] Ayata K, Miyazawa K, Takeuchi E, Bessho N, Mori H, Tozawa H. In: Asai S, ed., The 3rd Int Syrup on Electromagnetic Processing of Material, Nagoya: Iron Steel Inst Japan, 2000:376
[7] Takeuchi E, Brimacombe J K. Metall Trans, 1984; 15B: 493
[8] Nakata H, Etay J. ISIJ Int, 1992; 32:521
[9] Miyoshino I, Takeuchi E, Yano H, Sakane J, Saeki T, Kajioka H. ISIJ Int, 1989; 29:104
[10] Bikerman J J. Physical Surface. New York: Academic Press, 1970:12
[11] American Society for Metals. Metals Handbook. Vol. 2, 9th ed., Metals Park, Ohio: ASM International, 1990: 1093
[12] Zhang X Y, Qi B M, Zhu X L. Applied Chemic Handbook. Beijing: National Defence Industry Press, 1986:322(张向宇,戚保民,朱鑫林.实用化学手册.北京:国防工业出版社,1986:322)
[13] Sumi I, Sassa K, Asai S. Tetsu Hagané, 1992; 78:447(鹫见 郁宏,佐佐 健介,浅井 滋生.铁钢,1992;78:447)
[1] 王强; 金百刚; 高翱 . 中频磁场下两段式无缝结晶器的透磁效果[J]. 金属学报, 2008, 44(7): 883-886 .
[2] 王强; 金百刚; 崔大伟; 刘岩; 赫冀成 . 无缝软接触电磁连铸结晶器的冷却效果分析[J]. 金属学报, 2008, 44(1): 112-118 .
[3] 金百刚; 王强; 刘岩; 崔大伟; 赫冀成 . 两段式无缝软接触电磁连铸结晶器内的电磁场分布[J]. 金属学报, 2007, 43(9): 999-1003 .
[4] 金百刚; 王强; 崔大伟; 刘燕; 赫冀成 . 两段式无缝软接触结晶器电磁参数和结构参数的研究[J]. 金属学报, 2007, 43(4): 427-432 .
[5] 雷作胜; 任忠鸣; 闫勇刚; 邓康 . 高频调幅磁场下无结晶器振动电磁连铸技术的实验研究[J]. 金属学报, 2004, 40(9): 995-999 .
[6] 那贤昭; 张兴中; 仇圣桃; 干勇 . 方坯软接触电磁连铸结晶器内三维电磁场的数值模拟[J]. 金属学报, 2002, 38(9): 947-951 .
[7] 那贤昭; 张兴中 . 软接触电磁连铸技术分析[J]. 金属学报, 2002, 38(1): 105-108 .
[8] 周月明; 佐佐健介; 浅井滋生 . 连铸过程中间歇式高频磁场代替结晶器机械振动的可行性实验研究[J]. 金属学报, 2001, 37(7): 777-780 .
[9] 曾德鸿; 毛斌 . 冷坩埚电磁连铸弯月面形状的数值模拟[J]. 金属学报, 2000, 36(2): 162-166 .
[10] 于光伟; 贾光霖 . 方坯软接触电磁连铸结晶器内钢液弯月面行为的热模拟[J]. 金属学报, 2000, 36(12): 1253-1257 .
[11] 任忠鸣; 董华锋; 邓康; 蒋国昌 . 软接触结晶器电磁连铸中初始凝固的基础研究[J]. 金属学报, 1999, 35(8): 851-855 .
[12] 邓康; 任忠鸣; 蒋国昌 . 软接触电磁连铸的数值模拟和实验分析[J]. 金属学报, 1999, 35(10): 1112-1116 .
[13] 任忠鸣;周月明;张春源;蒋国昌. 水平电磁连铸中金属磁悬浮行为[J]. 金属学报, 1996, 32(6): 642-646.