Please wait a minute...
金属学报  2004, Vol. 40 Issue (3): 230-234     
  论文 本期目录 | 过刊浏览 |
Al--Li--Cu--Mg--Zr alloy, fatigue,
陈志武;程 璇;张 颖
厦门大学材料科学与工程系
Mechanism Of Electric Fatigue In PLZE Ceramics
CHEN Zhiwu; CHENG Xuan; ZHANG Ying
Department of Materials Science and Engineering; Xiamen University
引用本文:

陈志武; 程璇; 张颖 . Al--Li--Cu--Mg--Zr alloy, fatigue,[J]. 金属学报, 2004, 40(3): 230-234 .
, , . Mechanism Of Electric Fatigue In PLZE Ceramics[J]. Acta Metall Sin, 2004, 40(3): 230-234 .

全文: PDF(13016 KB)  
摘要: 探讨了PLZT铁电陶瓷的电疲劳特性及疲劳机理。测量并比较了室温下电疲劳前后材料的介电温谱及电滞回线以及疲劳试样在高于Curie温度之上保温数小时之后其室温下的介电温谱及电滞回线。测试结果表明疲劳试样在高于Curie温度之上保温数小时之后其室温下的介电温谱及电滞回线明显不同于电疲劳前试样的介电温谱及电滞回线.SEM分析表明疲劳前样品的断裂模式主要为穿晶断裂, 而疲劳后样品的断口模式主要为沿晶断裂.利用原位XRD分析得出样品在交流电场下由900畴变导致的畴变应变高达0.1%, 这种反复高畴变应变造成的沿晶微裂纹, 最终导致了铁电陶瓷的电疲劳。
关键词 铁电陶瓷电疲劳900畴变    
Abstract:The electric fatigue property and fatigue mechanism of PLZT ferroelectric ceramics were studied. The dielectric constant and hysteresis loops for the non--fatigued sample were measured and compared with those for the fatigued sample at room temperature and with those for the fatigued sample annealed above the Curie temperature for hours. The experimental results show that the temperature dependences of dielectric constant and the hysteresis loops of the fatigued sample annealed above the Curie temperature for hours differ significantly from those of the non--fatigued sample.The SEM analysis indicates that the facture mode is mainly trans--granular for the non—fatigued sample, while inter--granular for the fatigue sample. The magnitude of strain due to the 90.domain reorientation during the application of an AC electric field, estimated from the in--situ XRD spectra, reaches as high as 0.1%. This repeated and high strain induced by the 90 domain reorientations ultimately leads to electric fatigue of the samples.
Key wordsferroelectric ceramics    electric fatigue
收稿日期: 2003-03-08     
ZTFLH:  TG113. 25  
[1] Chen D R. Li G R. Zhu M G. J Function Mater Dev, 1997; 3(4) : 236(陈大任,李国荣,朱梅根.功能材料与器件学报,1997; 3(4) :236)
[2] Jiang Q Y, Cao W W, Cross L E. J Am Ceram Soc, 1994; 77: 211
[3] Yang W. Mechatronic Reliability. Beijing: Tsinghua University Press, 2001: 21(杨卫.力电失效学.北京:清华大学出版社,2001:21)
[4] Dederichs H, Arlt G Ferroelectrics. 1986; 68: 281
[5] Pan W Y, Yue C F, Tosyali O. J Am Ceram Soc, 1992; 75: 1543
[6] Warren W L, Turtle B A, Dimos D. Appl Phys Lett, 1995; 67: 1426
[7] Pan W Y, Yue C F, Tuttle B A. Ceram Trans, 1992; 25: 385
[8] Zhang N Y, Li L T, Gui Z L. Mater Chem Phys, 2001; 72: 5
[9] Wang D, Fotinich Y, Carman G P. J Appl Phys, 1998; 83: 5342
[10] Fatuzzio E, Merz W J. Ferroelectricity. New York: NorthHolland Pubilishing Co., 1967: 102
[11] Stewart W C Cosentino L S. Ferroelectrics, 1970; 1: 149
[12] Plessner K W. Proc Phys Soc London Section, 1956; B69: 1261
[13] De Araujo C. A-Paz, Cuchiaro J D, Mcmillan L D, Scott M C, Scott J F. Nature, 1995; 374: 627
[14] Ikegamma S, Ueda J. J Phys Soc Jpn, 1967; 22: 725
[15] Pan W Y, Zhang Q M, Jiang Q Y, Cross L E. Ferroelectrics, 1988; 88: 1
[16] Nuffer J, Lupascu D C, Rodel J. d Eur Ceram Soc, 2001; 21: 1421
[17] Furuta A, Uchino K. J Am Ceram Soc, 1993; 76: 1615
[18] Takahashi S, Ochi A, Yonezawa M, Yano T, Hamatsuki T, Fukui I. Jpn J Appl Phys, 1983: 22: 157
[19] Carl K. Ferroelectrics, 1975; 9: 23
[20] Talor G W. J Appl Phys, 1967; 38: 4697
[21] Pan M J, Park S E, Park C W Markowski K A, Yoshikawa S. Randall C A. J Am Ceram Soc, 1996: 79: 2971
[22] Yoo I K, Desu S B. Mater Sci Eng, 1992; B13:319
[23] Arlt G. Neumanna H. Ferroelectrics, 1988; 87:109
[24] Roebels U, Calderwood J H, Arlt G. J Appl Phys, 1995: 77:4002
[25] Li SP, Bhalla A S, Newnham R E, Cross L E. J Mater Sci, 1994; 29:1290
[26] Li X P, Shih W Y, Vartuli J S, Milius D L, Akasy I A, Shih W H. J Am Ceram Soc, 2002; 85:844
[27] Tsnrumi T, Kumano Y, Ohashi N, Takenaka T, Fukunaga O. Jpn J Appl Phys, 1997; 36:5970
[28] Zhang Y. Acta Mech Sin, 2000; 32(2) : 213(张颖.力学学报),2000; 32(2) : 213)
[29] Cao H, Evans A. J Am Ceram Soc, 1994; 77:1783
[30] Pak Y E. J Appl Mech, 1990; 57:647
[31] Zhang T Y, Tong P. Int J Solids Structs, 1996; 33:343
[1] 刘怡萱; 程璇; 张颖 . 准同型相界附近PLZT铁电陶瓷相变的原位Raman谱观测[J]. 金属学报, 2008, 44(1): 29-33 .
[2] 黄海友; 褚武扬; 宿彦京; 高克玮; 李金许; 乔利杰 . PZT铁电陶瓷的氢致半导体化[J]. 金属学报, 2005, 41(9): 1004-1008 .
[3] 赵显武; 褚武扬; 宿彦京; 高克玮; 乔利杰 . 应力和电场单独或耦合作用下PZT--5H卸载压痕裂纹的扩展[J]. 金属学报, 2005, 41(7): 708-712 .
[4] 张飒; 程璇; 张颖 . 铁电陶瓷畴变的原位Raman谱观测[J]. 金属学报, 2005, 41(6): 663-668 .
[5] 黄海友; 宿彦京; 高克玮; 褚武扬 . 电场、残余应力和介质对PZT--5H铁电陶瓷压痕裂纹扩展的耦合作用[J]. 金属学报, 2005, 41(1): 36-.
[6] 黄海友; 褚武扬; 宿彦京; 高克玮; 乔利杰 . PZT-5铁电陶瓷恒载荷压痕裂纹在空气和水中的扩展过程[J]. 金属学报, 2004, 40(9): 962-966 .
[7] 王毅; 褚武扬; 宿彦京; 高克玮; 乔利杰 . 应力促进PZT铁电陶瓷的电致滞后断裂[J]. 金属学报, 2004, 40(6): 585-.
[8] 张颖; 陈志武; 程璇; 张飒 . 原位XRD法研究电疲劳过程中铁电陶瓷PLZT的畴变[J]. 金属学报, 2004, 40(12): 1299-1304 .