Please wait a minute...
金属学报  2004, Vol. 40 Issue (10): 1009-1017     
  论文 本期目录 | 过刊浏览 |
含有两尺寸组粒子分布的多相材料再结晶的研究
宋晓艳 R. Markus 张久兴
北京工业大学材料科学与工程学院新型功能材料教育部重点实验室; 北京 100022
Recrystallization in Multi Phase Materials Containing Particles with A Two—Class Size Distribution
SONG Xiaoyan; R. Markus; ZHANG Jiuxing
College of Materials Science and Engineering; Beijing University of
引用本文:

宋晓艳; R.Markus; 张久兴 . 含有两尺寸组粒子分布的多相材料再结晶的研究[J]. 金属学报, 2004, 40(10): 1009-1017 .
, , . Recrystallization in Multi Phase Materials Containing Particles with A Two—Class Size Distribution[J]. Acta Metall Sin, 2004, 40(10): 1009-1017 .

全文: PDF(14388 KB)  
摘要: 采用仿真和实验相结合的方法,系统研究了含有两尺寸组粒子分布的多相材料的再结晶过程。建立了可描述大粒子激发形核和小粒子钉扎作用的Monte-Carlo仿真模型。利用仿真定量研究了两种粒子各种参数对形核和再结晶晶粒长大过程的影响,表明粒子激发形核效率依赖于大粒子影响区的储存能和局部小粒子的分布状态;基体平均储存能和大粒子高应变区储存能作为驱动力和小粒子钉扎阻力的竞争,决定整体材料发生完全再结晶、部分再结晶或再结晶被完全抑制。将Al-(0.3—1.1)%Zr(质量分数)系列合金的实验结果与相同形变和粒子参数条件下的仿真结果进行了比较,再结晶组织形貌和再结晶动力学的仿真计算和实验观测符合良好。
Abstract:Recrystallization in multi-phase materials containing particles with a two-class size distribution was studied with modeling and experiments. A 3D Monte-Carlo model combined with deterministic criteria was developed to describe nucleation stimulated by coarse particles and pinning effect of fine particles. The influences of various particle parameters on nucleation and growth of recrystallizing grains were quantitatively studied by simulations. The results show that the efficiency of particle stimulated nucleation depends on the stored energy in the particle-affected region and the local distribution of fine particles. The competition between the local stored energy, as the driving force for recrystallization, and the dragging force from fine particles, determines the final state of complete recrystallization, partial recrystallization or fully inhibited recrystallization in the whole material. Good agreements of morphologies and recrystallization kinetics are found in comparison between experiments and simulations for a series of Al-(0.3-1.1)%Zr (mass fraction) alloys under the same deformation and particle parameters.
Key words
收稿日期: 2003-11-26     
ZTFLH:  TG111.1  
[1] Bellier S P, Doherty R D. Acta metall, 1977; 25: 521
[2] Faivre P, Doherty R D. J Mater Sci, 1979; 14: 897
[3] Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomen. Oxford: Pergamon Press, 1995: 173
[4] Doherty R D, Hughes D A, Humphreys F J, Jonas J J, Juul J D, Kassner M E, King W E, McNelley T R, McQueen H J, Rollett A D. Mater Sci Eng, 1997; A238: 219
[5] Vandermeer R A, Jensen D J. Acta Mater, 2001; 49: 2083
[6] Humphreys F J. Acta Metall, 1977; 25: 1323
[7] Vetrano J S, Bruemmer S M, Pawlowski L M, RobertsonI M. Mater Sci Eng, 1997; A238: 101
[8] Eschbach L, Uggowitzer P J, Speidel M O. Mater Sci Eng,1998; A248: 1
[9] Humphreys F J. Scr Mater, 2000; 43: 591
[10] Grimes R, Dashwood R J, Harrison A W, Flower H M.Mater Sci Technol, 2000; 16: 1334
[11] Nes E. Acta Metall, 1976; 24: 391
[12] Nes E, Hutchinson W B. In: Bilde-Sφrensen J B ed, Proc 10th Int Risφ Symp Metall Mater Sci, Roskilde, Denmark: Risφ National Laboratory, 1989: 233
[13] Srolovitz D J, Grest G S, Anderson M P. Acta Metall,1986; 34: 1833
[14] Rollett A D, Srolovitz D J, Doherty R D, Anderson M P.Acta Metall, 1989; 37: 627
[15] Rollett A D, Srolovitz D J, Anderson M P, Doherty R D.Acta Metall Mater, 1992; 40: 3475
[16] Song X, Rettenmayr M, Muller C, Exner H E. MetallMater Trans, 2001; 32A: 2199
[17] Mahin K W, Hanson K, Morris J W. Acta Metall, 1980;28: 443
[18] Marthinsen K, Lohne O, Nes E. Acta Metall, 1989; 37: 135
[19] Furu T, Marthinsen K, Nes E. Mater Sci Technol, 1990;6: 1093
[20] Hesselbarth H W, Gobel I R. Ada Metall Mater, 1991;39: 2135
[21] Gottstein G, Marx V, Reher F. Acta Mater, 1999; 47:1219
[22] Raabe D. Philos Mag, 1999; A79: 2339
[23] Raabe D. Adv Eng Mater, 2001; 3: 745
[24] Humphreys F J. Scr Metall Mater, 1992; 27: 1557
[25] Humphreys F J, Hurley P J. In: Gottstein G, MolodovD A eds, The First Joint International Conference ofRecrystallization and Grain Growth, Aachen: Springer-Verlag, 2001: 683
[26] Bolmaro R E, Browning R V, Guerra F M, Rollett A D.Mater Sci Eng, 1995; A196: 53
[27] Porter J, Humphreys F J. Met Sci, 1979; 13: 83
[28] Ashby M F. Philos Mag, 1970; 21: 399
[29] Song X, Liu G, Gu N. Z Metallkd, 2000; 91: 227
[30] Hillert M. Acta Metall, 1988; 36: 3177
[31] Anderson M P, Grest G S, Doherty R D. Scr Metall, 1989;23: 753
[32] Hazzledine P M, Oldershaw R D J. Philos Mag, 1990; A61:579
[33] Song X, Liu G. Scr Mater, 1998; 38: 1691
[34] Radhakrishnan B, Sarma G B, Zacharia T. Acta MetallMater, 1998; 46: 4415
[35] Kim S H, Lee D N. Mater Sci Eng, 2001; A313: 24
[36] Engler O, Kong X W, Lucke K. Acta Mater, 2001; 49:1701
[37] Hatch J E.Alumium: Properties and Physical Metallurgy,Metals Park, Ohio: American Society for Metals, 1984: 53
[38] Exner H E, Hougardy H P. Quantitative Image Analysisof Microstructures, Germany, Oberursel: DGM Informa-tionsgesellschaft, 1988: 15
[39] Vandermeer R A. In: Gottstein G, Molodov D A eds, TheFirst Joint International Conference of Recrystallizationand Grain Growth, Aachen: Springer-Verlag, 2001: 645
[40] Song X, Rettenmayr M. Mater Sci Eng, 2002; A332:15340
[1] 陈丽群, 邱正琛, 于涛. Ru对NiAl[100](010)刃型位错电子结构的影响[J]. 金属学报, 2019, 55(2): 223-228.
[2] 张国英 张辉 方戈亮 杨丽娜. Al--Zn--Mg--Cu 系铝合金中不同区域电子结构及应力腐蚀机理分析[J]. 金属学报, 2009, 45(6): 687-691.
[3] 邓文; 阮向东; 黄宇阳; 周银娥; 祝莹莹; 罗里熊 . 金属中高动量电子分布的实验研究[J]. 金属学报, 2005, 41(1): 33-.
[4] 孙丽; 陈厚文; 王蓉 . 氩离子轰击感生Ni2Al3和NiAl3成分变化的TEM/EDS研究[J]. 金属学报, 2003, 39(2): 113-119 .
[5] 郭进; 韦文楼; 马树元; 高英俊; 方志杰 . LaNi5电子结构与成键特征[J]. 金属学报, 2003, 39(1): 10-12 .
[6] 刘伟东; 刘志林; 屈华 . Ti-4.5Al-5Mo-1.5Cr合金增韧的价电子理论研究[J]. 金属学报, 2002, 38(12): 1246-1250 .
[7] 刘伟东; 刘志林; 屈华; 刘艳 . 高合金化β钛合金拉伸延性的价电子理论分析[J]. 金属学报, 2002, 38(10): 1037-1041 .
[8] 王贵昌; 赵玉藏 . 主族金属元素电子脱出功的计算[J]. 金属学报, 2000, 36(8): 790-792 .
[9] 徐东生; 李东; 胡壮麒 . Co3Ti化合物中合金元素有序行为的第一原理预测[J]. 金属学报, 1999, 35(9): 920-922 .