Please wait a minute...
金属学报  1988, Vol. 24 Issue (2): 111-118    
  论文 本期目录 | 过刊浏览 |
Ni-20Cr合金高温蠕变行为与位错亚结构的关系
张俊善;曹智本
大连工学院材料工程系;副教授;大连工学院
RELATIONSHIP BETWEEN CREEP BEHAVIOR AND DISLOCATION SUBSTRUCTURE IN Ni-20Cr ALLOYS
ZHANG Junshan Associate Professor;Department of Materiats Seience and Engineering;Dattan Institute of Technology;CAO Zhiben Dalian Institute of Technology
引用本文:

张俊善;曹智本. Ni-20Cr合金高温蠕变行为与位错亚结构的关系[J]. 金属学报, 1988, 24(2): 111-118.
, . RELATIONSHIP BETWEEN CREEP BEHAVIOR AND DISLOCATION SUBSTRUCTURE IN Ni-20Cr ALLOYS[J]. Acta Metall Sin, 1988, 24(2): 111-118.

全文: PDF(2281 KB)  
摘要: 在1173—1323K温度范围内研究了Ni-20Cr合金蠕变行为与位错亚结构的关系.在蠕变初期出现蠕变速率几乎不变的亚稳态阶段.电镜观察表明,亚稳态蠕变和未形成亚晶的均匀位错结构相对应.亚稳态到稳态的蠕变速率连续降低的过渡阶段是蠕变中形成的亚晶界逐渐取代晶界起位错攀移相消位置的结果. 提出了控制稳态蠕变速率的亚结构参数是亚晶界位错网目尺寸,蠕变速率可用ε=αρtbV_c/h表示.根据位错在晶界或亚晶界上攀移相消控制的蠕变机制讨论了固溶碳和晶界碳化物对蠕变行为的影响.
关键词 亚稳态亚结构亚晶界网目尺寸亚晶位向差位错相消    
Abstract:The relationship between creep behavior and dislocation substructurein Ni-20Cr alloys has been studied over the temperature range of 1173-1323K. A stage of substeady-state creep was observed in which creep rate ε_t is al-most constant in the primary stage of creep. TEM observation confirmed that thesubsteady-state creep corresponds to relatively homogeneous dislocation structurewhile the steady-state creep corresponds to subgrain structure. The creep rate reducecontineously from ε_t to ε_m, which has been attributed to the gradual substitutionof subboundaries for grain boundaries as dislocation climb site. The substructural parameter, subboundary misorientation, θ, or subboundarymesh size, h, has been related to the steady-state creep rate in recovery creep, whichcan be discribed as ε=αρ_t bV_c/h. A mechanism of recovery creep involving dis-location annihilation at subboundaries or grain boundaries was proposed and theeffect of solute carbon and grain boundary carbides on creep behavior has beendiscussed using above michanism.
Key wordssubsteady-state    substructure    subboundary mesh size    subgrain misorientation    dislocation annihilation
收稿日期: 1988-02-18     
1 Orlova A, Cadek J. Mater Sci Eng, 1986; 79: 1
2 Cailard D, Martin J L. Acta Metall, 1983; 31: 813
3 Morris M A, Martin J L. Acta Metall, 1984; 32: 1609
4 Suh S H, Cohen J B, Weetman J. Metall Trans A, 1983; 14: 117
5 Sherby O D, Burke P M. Prog Mater Sci, 1968; 13: 325
6 Bendersky L, Rosen A, Mukherjee A K. Scripta Metall, 1982; 16: 467
7 竹山雅夫,松尾孝,田中良平.铁钢,1986;72:1359
8 松尾孝,森岡信彦.电气制钢,1985:56:91
9 张俊善,松尾孝,菊池実,田中良平.铁钢,1987;73:183K
[1] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.
[2] 王六定 丁富才 王佰民 朱明 钟英良 梁锦奎. 低合金超高强度钢亚结构超细化对韧性的影响[J]. 金属学报, 2009, 45(3): 292-296.
[3] 张旺峰; 朱金华; 曹春晓 . 亚稳态材料的混合物强度法则新模型[J]. 金属学报, 2005, 41(1): 89-.
[4] 王学敏; 尚成嘉; 杨善武; 贺信莱 . 组织细化的控制相变技术机理研究[J]. 金属学报, 2002, 38(6): 661-666 .
[5] 傅云义; 胡赓祥; 孙祖庆 . Al67Mn8Ti24Nb1金属间化合物亚稳态粉末热压成形后的组织结构及性能[J]. 金属学报, 1999, 35(8): 856-860 .
[6] 傅云义; 胡赓祥 . 复相Al3Ti基金属间化合物亚稳转变及重有序化[J]. 金属学报, 1999, 35(6): 600-603 .
[7] 左汝林;周守则;丁培道. 铁基合金马氏体的切变过程[J]. 金属学报, 1996, 32(9): 904-912.
[8] 郝传勇;于尔靖;应慧筠;施成根. 8090Al—Li合金焊缝金属形核机制[J]. 金属学报, 1996, 32(6): 647-652.
[9] 徐永波;白以龙;沈乐天;薛青;李环;孔丹. 钢中剪切变形局部化的形成与发展[J]. 金属学报, 1995, 31(11): 485-493.
[10] 徐可为;胡奈赛;何家文. 纯铜和黄铜喷丸强化的组织效应[J]. 金属学报, 1994, 30(1): 29-34.
[11] 沈保根;曹蕾;宫华扬;杨林原;孔麟书;郭慧群. 亚稳态化合物Ce_2Fe_(23)B_3的结构与磁性[J]. 金属学报, 1993, 29(6): 8-12.
[12] 孙加林;康沫狂. 下贝氏体亚结构及晶体学分析[J]. 金属学报, 1991, 27(3): 72-76.
[13] 张景辉;李大军;赵九洲;贾均;李剑慧. 微合金化铸态马氏体铸铁的组织特征[J]. 金属学报, 1990, 26(6): 105-109.
[14] 钟家湘;齐彦;张修睦;郭蕴宜. 一种新的马氏体形态[J]. 金属学报, 1990, 26(5): 11-15.
[15] 谈育煦;任立平;李刚. 表面层亚结构和残余应力对不锈钢和低碳钢疲劳强度的影响[J]. 金属学报, 1989, 25(5): 59-64.