Please wait a minute...
金属学报  1984, Vol. 20 Issue (1): 24-33    
  论文 本期目录 | 过刊浏览 |
C-Mn结构钢塑性变形过程中空穴增长规律的研究——结构钢韧性断裂机理研究之二
史耀武;J.T.Barnby
西安交通大学;英国阿斯顿大学
ON THE VOID GROWTH OF C-Mn STRUCTURAL STEEL DURING PLASTIC DEFORMATION——Ductile Fracture Mechanisms in a Structural Steel (Ⅱ)
SHI Yaowu (Xi'an Jiaotong University); BARNBY J. T. (University of Aston; Birmingham; U.K.) (Manuscript received 21 March; 1983)
引用本文:

史耀武;J.T.Barnby. C-Mn结构钢塑性变形过程中空穴增长规律的研究——结构钢韧性断裂机理研究之二[J]. 金属学报, 1984, 20(1): 24-33.
, . ON THE VOID GROWTH OF C-Mn STRUCTURAL STEEL DURING PLASTIC DEFORMATION——Ductile Fracture Mechanisms in a Structural Steel (Ⅱ)[J]. Acta Metall Sin, 1984, 20(1): 24-33.

全文: PDF(1240 KB)  
摘要: 在试验分析的基础上,本研究提出了一种程序,以建立C-Mn结构钢在韧性断裂过程中的空穴增长与塑性应变及三轴应力状态之间的关系,并确定了空穴增长系数。由光滑拉伸试样和预制裂纹侧槽三点弯曲试样试验所确定的空穴增长系数,可能适宜较宽的试样拘束变化范围。空穴增长的实验关系式表明,当三轴应力状态(σm/(?))约大于1.2时,在该结构钢中的实际空穴增长速率低于由Rice-Tracey理论所确定的空穴增长速率,然而当三轴应力状态(σm/(?))约小于1.2时,由Rice-Tracey理论所确定的空穴增长表现为对实际材料中的空穴增长估计略为不足。另外,根据实验空穴增长研究,对预制裂纹侧槽三点弯曲试样在韧性起裂时钝化裂纹前端的塑性应变、相对空穴体积和应力状态三轴性的变化进行了测量和估计。
Abstract:A procedure was proposed to establish a void growth relation with the plastic strain and stress triaxiality during the ductile fracture of a C-Mn structural steel. A multiplying factor on void growth was determined using smooth tensile specimen tests and pre-cracked side-grooved three-point bend bar tests. The factor was expected to be available to a rather wide range of the constraint. Based on the experimental void growth relation, the real void growth rate in the structural steel is slower than that determined by the Rice-Tracey's void growth theory, when the stress triaxiality, σ_m/(?), is larger than about 1.2. However, when the σ_m/(?) value is smaller than about 1.2, the void growth predicted by the Rice-Tracy's theory trends to sightly underestimate the void growth in the steel. Moreover, the variations of the plastic strain, relative void volume and stress triaxiality were measured and evaluated ahead of the blunting crack tip in the pre-crackcd side-grooved three-point bend specimens, when the ductile tearing initiated.
收稿日期: 1984-01-18     
1 Berg, C.A., Applied Mechanics, Proc. 4th U.S. National Congress of Applied Mechanics, Ed. Rosenberg, R.M., Vol. 2, Pergamon, New York, 1962, p. 885.
2 McClintock, F.A., Trans. ASME, Ser. E, J. Appl. Mech., 35 (1968) , 363.
3 Rice, J.R.; Tracey, D.M., J. Mech. Phys. Solids, 17 (1969) , 201.
4 Cox, T.B.; Low, J.R., Jr., Metall. Trans., 5 (1974) , 1457.
5 Perra, M.; Finnie, I., Advances in Research on the Strength and Fracture of Materials, Proc. 4th Int. Conf. on Fracture Ed. Taplin, D. M. R., Vol. 2, Pergamon, New York, 1977, p. 415.
6 Beremin, F. M., Advances in Fracture Research, Proc. 5th Int. Conf. on Fracture, Ed. Francois, D., Vol. 2, Pergamon, Oxford, 1981, p. 809.
7 Shi Yao-wu, PhD. Thesis, The University of Aston in Birmingham, 1982.
8 史耀武,Barnby,J.T.,金属学报,20(1984) ,A17。
9 Lautridou, J.C.; Pineau, A., Eng. Fract. Mech., 15(1981) , 55.
10 Shockey, D.A.; Dao K.C.; Seaman, L.; Burback, R.; Curran, D.R., Computational Modelling of Microstructural Fracture Processes in A533B Pressure Vessel Steel, NP-1398, Research Project 1023-1, Final Report, Electric Power Research Institute, Palo Alto, California, May 1980.
11 Hutchinson, J.W., J. Mech. Phys. Solids, 16 (1968) , 337.
12 Rice, J.R.; Rosengren, G.F., ibid., 16 (1968) , 1.
13 Kumar, V.; German, M.D.; Shih, C.F., An Engineering Approach for Elastic-Plastic Fracture Analysis, NP-1931, Research Project 1237-1, Topical Report, Electric Power Research Institute, Palo Alto, California, July 1981.
14 Curry, D.A.; Pratt, P.L., Mater. Sci. Eng., 37 (1979) , 223.
15 Barnby, J.T.; Johnson, M.R., Met. Sci. J., 3 (1969) , 155.
16 Shih, C.F.; German, M.D., Int. J. Fract., 17 (1981) , 27.
No related articles found!