Please wait a minute...
金属学报  1980, Vol. 16 Issue (2): 121-139    
  论文 本期目录 | 过刊浏览 |
含磷深冲钢冷轧和退火板材的晶体空间取向分布
胡郇
美国钢铁公司研究所
SPATIAL ORIENTATION DISTRIBUTION OF CRYSTALLITES IN COLD-ROLLED AND IN ANNEALED SHEETS OF DEEP-DRAWING PHOSPHORUS STEEL
Hsun Hu U. S. Steel Research Laboratory
引用本文:

胡郇. 含磷深冲钢冷轧和退火板材的晶体空间取向分布[J]. 金属学报, 1980, 16(2): 121-139.
. SPATIAL ORIENTATION DISTRIBUTION OF CRYSTALLITES IN COLD-ROLLED AND IN ANNEALED SHEETS OF DEEP-DRAWING PHOSPHORUS STEEL[J]. Acta Metall Sin, 1980, 16(2): 121-139.

全文: PDF(1551 KB)  
摘要: 本文用晶体空间取向分布研究了含磷深冲钢冷轧和退火织构.仔细分析了冷轧和退火板材取向分布函数的特征.从观察到的特征可以认为,退火织构起源于微带和过渡带生核,随后这些再结晶晶粒借吞并基体形变织构而长大.含磷深冲钢与铝镇静深冲钢的退火板材之间晶体取向分布有明显的区别.
Abstract:The cold-rolling and annealing textures of a deep-drawing phosphorus steelhave been studied by he patial orientation distribution of the crystallites. Thecharacteristics of the orientation distribution unctions of the as-cold-rolled andof the annealed sheets were closely examined. The observed features uggest thatthe annealing texture is originated by microband or transition-band nucleation,followed by the rowth of recrystallized grains at the expense of the matrix de-formation textures. The crystallite rientation distribution of the annealed sheetof the deep-drawing phosphorus steel is clearly different from hat of the annealedsheet of deep-drawing aluminum-killed steels.
收稿日期: 1980-02-18     
[1] Hu, H., Texture Cryst. Sol., 2 (1976) , 113.
[2] Hu, H., Met. Trans., 8A (1977) , 1567.
[3] Hu, H., Texture Cryst. Sol., 3 (1979) , 215--230.
[4] Hu, H., "Effect of Silicon on Annealing Texture, Plastic Anisotropy, and Mechanical Properties of Low-Carbon Phosphorus-Containing Steels," Proceedings of Symposium on Modern Developments in HSLA Formable Steels, TMS-AIME Fall Meeting, October 24--27, 1977, Chicago, Ⅰ.Ⅱ.
[5] Hu, H., "Low-Carbon Phosphorus Steels for High-Strength Cold-Rolled Sheet Applications," Unpublished work, U. S. Steel Research Laboratory.
[6] Roe, R. J., J. Appl. Phys., 36 (1965) , 2024.
[7] Roe, R. J., J. Appl. Phys., 37 (1966) , 2069.
[8] Bunge, H. J., Z. Metallk., 56 (1965) , 872.
[9] Bunge, H. J., Mathematische Methoden der Texturanalyse, Akademie-Verlag, Berlin, 1969.
[10] Morris, P. R. and Heckler, A. J., Advances in X-Ray Analysis, 1968, Vol. 11, p. 454.
[11] Meieran, E. S., Rev. Sci. Instrum., 33 (1962) , 319.
[12] Lopata, S. L. and Kula, E. B., Trans. AIME, 224 (1962) , 865.
[13] Leber, S., Rev. Sci. Instrum., 36 (1965) , 1747.
[14] Elias, J. A. and Heckler, A. J., Trans. AIME, 239 (1967) , 1237.
[15] Schuiz, L. G., J. Appl. Phys., 20 (1949) , 1030.
[16] Morris, P. R., Texture Cryst. Sol., 2 (1976) , 57.
[17] Jura, J. and Pospiech, J., Texture Cryst. Sol., 2 (1976) , 81.
[18] Bunge, H. J., Tobisch, J. and Mucklich, A., Texture, 1 (1974) , 211.
[19] Humbert, M., Wagner, F. and Baro, R., Texture Cryst. Sol., 3 (1978) , 27.
[20] Davies, G. J., Goodwill, D. J. and Kallend, J. S., J. Appl. Cryst., 4 (1971) , 67.
[21] Hu, H., in Recovery and Recrystallization of Metals, Interscience Publishers, New York, 1963, p. 311. [22] Bunge, H. J., Phys. Status Solidi, 26 (1968) , 167.
[23] Bunge, H. J. and Roberts, W. T., J. Appl., Cryst., 2 (1969) , 116.
[24] Schlafer, D. and Bunge, H. J., Texture, 1 (1974) , 157.
[25] Bunge, H. J., Schleusener, D. and Schlafer, D., Met. Sci. J., 8 (1974) , 413.
[26] Hechler, A. J. and Granzow, W. G., Met. Trans., 1 (1970) , 2089.
[27] Inagaki, H. and Suda, T., Texture, 1 (1973) , 129.
[28] Willis, D. J. and Hatherly, M., in Texture and Properties of Materials, 4th Int. Conf. on Texture, Cambridge, The Metals Society, 1976, p. 48.
No related articles found!