Please wait a minute...
金属学报  1957, Vol. 2 Issue (2): 169-177    
  论文 本期目录 | 过刊浏览 |
利用区域熔化法提纯铝和锡的一些试验
陈能宽;刘民治
中国科学院应用物理研究所;中国科学院应用物理研究所
SOME EXPERIMENTS ON THE PURIFICATION OF ALUMINUM AND TIN BY THE ZONE-MELTING METHOD
CHEN NENG-KUAN;LIU MIN-CHICH Institute of Applied Physics; Academia Sinica
引用本文:

陈能宽;刘民治. 利用区域熔化法提纯铝和锡的一些试验[J]. 金属学报, 1957, 2(2): 169-177.
, . SOME EXPERIMENTS ON THE PURIFICATION OF ALUMINUM AND TIN BY THE ZONE-MELTING METHOD[J]. Acta Metall Sin, 1957, 2(2): 169-177.

全文: PDF(915 KB)  
摘要: <正> 用作半导体材料的锗和硅,需要高度纯化方能使用,已为众所周知。在研究金属的许多物理性质方面,如结晶凝固的过程,金属的强度、腐蚀及内部原子的扩散,合金的相图等,也常常需要先有纯金属或“纯合金”,方能进一步控制其他条件,系统地研究它们之间相应的规律。
Abstract:By means of a simple wire-wound furnace, it was possible to purify aluminumand tin by the zone-melting method. The principle of this technique was givenand the mechanical properties of aluminum and tin before and after successivetreatments were determined. It was shown that with increasing purity, the yieldvalue as well as the cocfficient of strain hardening decreases in the tensila ex-periment. During a micro-creep test at a constant load, the amount of initialcreep and the subsequent creep rate increase with increasing purity. Effects ofpurity on the characteristics of recrystallization were also noted.
收稿日期: 1957-02-18     
[1] R. Schneider, Pogg. Ann., 96 (1855) , 494. R Schneider, J. f. Praktishe Chamie 23 (1881) , 81.
[2] J. Czochralski, Zeitschrift fur Physikalische Chemie, 92 (1918) , 219. G. K, Teal and J. B. Little, Phys. Rev., 78 (1950) . 647.
[3] G. H. Gulliver, Metallic Alloys (appendix) (1922) , London. Chas. Griffin & Co. E. Scheuer, Ztsch Metallkund, 23 (1931) , 237. A. Hayes and J. Chipman, Trans. AIME, 135 (1939) , 85.
[4] J. J. Hoffman, Research Nat. Bur. Stand. 13 (1934) , 665, 669. J. J. Hoffman and B. F. Scubner, ibid, 15 (1935) , 206. P. W. Bridgman, Proc. Amer. Acad. Arts and Sciences 60 (1925) , 305. R. H. McFee, Journal of Chemical Physics, 15 (1947) , 856.
[5] W. G. Pfann, Trans. AIME, 194 (1952) . 747; J. Metals (July 1952) . W. G. M and K. M. Olsen, Bell Lab. Record, 33 (b) (1955) , 201.
[6] W. G. Pfann and K. M. Olsen, Phys. Rev., 89 (1953) , 322. E. E. Schumacher, J. Metals, 5 (1953) , 1428.
[7] P. H. Keck and E. Golay, Phys. Rev., 89 (1953) , 1297. P. H. Keck and W. Horn, ibid, 91 (1953) , 512. P. H. Keck, M. Green and M. Polk, J. Appl. Phys. 24 (1954) , 1479. P. H. Keck, W. Horn, J. Soled and J. Ma Donald, Rev. Sci. Inst., 25 (1954) , 331.
[8] G. Chaudron, Nature London, 174 (1954) , 923.
[9] M. Tanenbaum, A. T. Goss and W. G. Pfann. J. Metals, 6 (1954) , 762.
[10] 2, 1 (1956) , 93.
[11] P. H. Brace, A. W. Cochardt and G. Comenets, Rev. Sci. Inst., 26 (3) (1955) , 303.

[12] C. H. L. Goodman, Research, 7 (1954) , 168.
[13] G. L. Pearson and M. Tanenbaum, Phys. Rev., 90 (1953) , 153.
[14] W. Sasaki, N. Sakamts and M. Kuno, J. Phys., Soc, Japan, 9 (1954) , 650.
[15] F. Gaus, J. Lagrenandie and P. Seguine, C. R. Paris, 237 (1953) , 310.
[16] J. Van den Boomgaard, F. A. Kroger and H. J. Vink, J. Electronics, London, 7, 2 (1955) , 212.
[17] D. Kuklmann-Wilsdorf and H. Wilsdorf, Acta Met., 1 (1953) , July, 394.
[18] F. D. Rosi, Trans AIME, 200 (1954) , 1009.
No related articles found!