Please wait a minute...
金属学报  1956, Vol. 1 Issue (1): 37-57    
  论文 本期目录 | 过刊浏览 |
氫在退火钢锭中的分佈
李薰;张子青;贺潛菊;冯夢菊;赵金嶺;徐富华
中国科学院金属研究所;中国科学院金属研究所;中国科学院金属研究所;中国科学院金属研究所;某厂;技术员;某厂;技术员
THE DISTRIBUTION OF HYDROGEN IN ANNEALED STEEL INGOTS
LEE HSUN; CHANG TZE-CHING; HO CHEIN-CHU; FUNG MENG-CHU; CHAO CHIN-LING AND HSU FU-HWA.(Institute of Metal Research; Academia Sinica)
引用本文:

李薰;张子青;贺潛菊;冯夢菊;赵金嶺;徐富华. 氫在退火钢锭中的分佈[J]. 金属学报, 1956, 1(1): 37-57.
LEE HSUN, CHANG TZE-CHING, HO CHEIN-CHU, FUNG MENG-CHU, CHAO CHIN-LING AND HSU FU-HWA.(Institute of Metal Research, Academia Sinica). THE DISTRIBUTION OF HYDROGEN IN ANNEALED STEEL INGOTS[J]. Acta Metall Sin, 1956, 1(1): 37-57.

全文: PDF(2543 KB)  
摘要: 

氢在鋼锭中的分佈是一个具有重要实际意义的问题,但在过去未得到研究工作者足够的重视.本文利用高铬型合金鋼在常温下不损失氢的特点,并建立了適宜的半微量定氢装置,对退火后的鋼锭中各个部位进行了定氢试验。结果证明,氢在鋼锭中的分佈是具有规律性的,指出了前人根据不全面的实验结果所提出的错误结论. 经过退火处理后的鋼锭,其平均含氢量虽然只及原来钢液含氢量的一半,伹在某些局部其含氢量反而高於钢液.这说明钢锭中确有氢的偏析现象存在.根据等氢曲线的分布情况来看,钢锭中氢偏析严重之处大致与最后凝固的部分相符.凝固过程中钢锭一面受到中注管散热的影响,也能从等氢曲线的分佈情况反映出来,而这种影响从低倍检验结果来看是没有能够觉察到的. 从氢含量变化的平均趋势来看,退火钢锭中的氢分佈不管是沿横方向抑是沿縱方向都服从於扩散规律,伹必须考虑到结晶构造和内部缺陷的影响.譬如,沿柱状晶轴方向的氢扩散似乎比等轴晶区域内的氢扩散速度大,而钢锭中心疏松对於去氢则起阻碍作用,过去对於这些方面的了解是不够的. 根据上述结果的分析讨论,本文还为某种防止钢中白点的热处理方法提供了理论上的解释.

Abstract

The study of the distribution of hydrogen in steel ingots, despite its practical importance, has not received due attention from previous workers. Available experimental results are mainly fragmentary and non-systematic, and therefore many disputable opinions exist. Desirous of investigating this problem in greater details, the authors employed several annealed ingots of high chromium steels which were considered to be particularly suitable because they evolved little gas at room temperature and consequently the inherent difficulty to avoid the loss of hydrogen during sampling was, to a very large extent, overcome. For this purpose also, suitable apparatus capable of determining relatively small amount of hydrogen was constructed. The results obtained show that the hydrogen distribution in the annealed ingots follows a significant and regular pattern, thus dismissing certain misgiving conclusions based on contradictory results given by previous workers. Although the average hydrogen content of the anealed ingots amounted to not more than half that of the liquid stael, yet in certain parts of their interior the local hydrogen content was found to be higher than that of the liquid steal. This affirms the existence of hydrogen segregation in steel ingots. Moreover, from maps of hydrogen contour lines drawn for the ingots it can be seen that the regions of the highest hydrogen content roughly coincide with the last solification. Indeed, the effect due to certain external irregularities encountered in the course of solification is detectable rather from the hydrogen maps than by the usual method of macro-etching.In the longitudinal or the transverse direction of the annealed ingots, the general trend of hydrogen variation based on average hydrogen content is shown to be governed by the law of hydrogen diffusion. Further examinations reveal that the ingot structure and its internal porosity exert considerable influence upon the distribution. It is likely that hydrogen diffusion may be faster in columnar crystals than in equi-axed crystal regions. The presence of porosities in ingots seems to retard the removal of hydrogen. Such implications have not been sufficiently realized in the past.Based on the discussion of the experimental results, certain immunizing treatment suitable for preventing hairline cracks in certain types of steel is explained.

收稿日期: 1956-01-18     

[1] 李薰、陈文(?)、杨维琛、张永刚、张子青,冶炼过程中钢液含量的变化,金属研究工作报告会会刊,1954.

[2] Sykes, C., Burton, H. H. & Gegg, C. C., Jour. of Iron & Steel Institute, 156(1947) , 155.

[3] Hobson, J, D. & Sykes, Jour. I.S.I., 170(1952) , 118.

[4] Smith, D. P., Carney, D. J., Eastwood, L. W. & Sims, C. E., Gases in Metals, American Society for Metals, p. 166, 1953.

[5] Dorge, C. & Duncan, E. E., Transactions A.I.M.E., 188 (1950) , 884.

[6] Carter, S. F., Proceedings Electric Furnace Steel Conference, p. 267, 1949.

[7] Andrew, J. H., Lee, H. (李薰), Lloyd, H. K. & Stephenson, N., Jour. I.S.I., 156 (1947) , 208.

[8] Geller W. & Tak-ho Sun, Archiv fur das Eisenhuttenwesen, 21 (1950) , 423.

[9] #12

[10] #12

[11] Sykes, C., Discussion to "The Removal of Hydrogen from Steel", Jour. LS.L, 154 (1946) , 420.

[12] Gurry, R. W., Transaction A. I. M. E., 150 (1942) , 172.

[13] Jackson, R. & others, Jour. I. S. I., 150 (1944) , 211.

[14] Edwards, C. A., Jour. of I. S. I. (1924) , No. 2, 201.

[15] Smithells, C. & Ransley, C. J., Proc. Roy. Soc. 155A, p. 195, 1936.

[16] Martins, U. M., Solidification of Metals, Progress in Metal Physics, 5 (1954) , 279.

[17] Barrer, R. M., Diffusion in and through Solids, Cambridge University Press, 1941.

[18] Andrew, J. H., Lee, H. (李薰), Mallik, A. K. & Quarrell, A. G., Jour. I. S. I., 154 (1946) , 67.

[19] 杜博伏伊,钢中的白点,杨惠华译,142页.

No related articles found!