Please wait a minute...
金属学报  2013, Vol. 49 Issue (9): 1081-1088    DOI: 10.3724/SP.J.1037.2013.00198
  论文 本期目录 | 过刊浏览 |
Cr-Mn-N奥氏体耐热钢中M23C6型碳化物析出特征及其对韧塑性的影响
郑雷刚,胡小强,康秀红,李殿中
中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
PRECIPITATION BEHAVIOR OF M23C6 AND ITS EFFECTS ON DUCTILITY AND TOUGHNESS OF A NOVEL Cr-Mn-N AUSTENITIC HEAT RESISTANT STEEL
ZHENG Leigang, HU Xiaoqiang, KANG Xiuhong, LI Dianzhong
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang110016
引用本文:

郑雷刚,胡小强,康秀红,李殿中. Cr-Mn-N奥氏体耐热钢中M23C6型碳化物析出特征及其对韧塑性的影响[J]. 金属学报, 2013, 49(9): 1081-1088.
ZHENG Leigang, HU Xiaoqiang, KANG Xiuhong, LI Dianzhong. PRECIPITATION BEHAVIOR OF M23C6 AND ITS EFFECTS ON DUCTILITY AND TOUGHNESS OF A NOVEL Cr-Mn-N AUSTENITIC HEAT RESISTANT STEEL[J]. Acta Metall Sin, 2013, 49(9): 1081-1088.

全文: PDF(2297 KB)  
摘要: 

利用OM,SEM与XRD物相分析等方法,研究了一种C和N含量相近的Cr-Mn-N奥氏体耐热钢在600—1000℃温度范围内时效过程中析出相的析出特征及其对材料韧塑性的影响.结果表明, 实验钢中时效析出相主要为富Cr的M23C6型碳化物,且具有连续膜状、层片状、短杆状颗粒状等典型形貌特征,析出序列为“晶界膜状析出→胞状组织内层片状析出→晶内短杆状析出”. 此外,实验钢的时效脆性与M23C6型碳化物的析出特征密切相关.晶界处呈连续膜状特征的M23C6型碳化物显著降低实验钢的冲击韧性,是造成时效脆性的主要因素.

关键词 Cr-Mn-N奥氏体耐热钢M23C6型碳化物胞状组织时效脆性    
Abstract

Cr-Mn-N austenitic heat resistant steels have bright future in wide applications due to their lower cost, excellent mechanical properties, and outstanding local corrosion resistance after substituting the nickel partly or completely by the Mn, N and C elements. As the content of C or N elements increasing in Cr-Mn-N steels, a large quantity of precipitates form during hot working, resulting in embrittlement of these steels. In the present study, a new Cr-Mn-N austenitic heat resistant steel was aged at temperatures from 600℃ to 1000℃ in duration from 10 min up to 6000 min. By OM, SEM and XRD, the microstructure evolution of precipitates and their effects on ductility and toughness of the studied steel were investigated. The results indicated that precipitates formed during aging were mainly Cr-rich M23C6 carbides, whose morphologies changed in a sequence of intergranular films, lamellae in cellular microstructure and intragranular rods or particles with the increase of aging time and/or temperature. The time-temperature-precipitation (TTP) curves for M23C6 carbides were determined, which have a typical C-shaped profile with a nose temperature between 850℃ and 900℃, and an incubation period not more than 1 min. In addition, it was found out that the aging embrittlement of the studied steel is strongly dependent on the morphology of M23C6 carbides. The intergranular film-shaped M23C6 carbides were considered as the main factor to favor cracks rapidly expanding along grain boundaries, finally resulting in brittle intergranular fracture.

Key wordsCr-Mn-N austenitic heat resistant steel    M23C6 carbide, cellular microstructure    aging embrittlement
收稿日期: 2013-04-17     
作者简介: 郑雷刚, 男, 1983年生, 博士生

[1]Berns H. ISIJ Int, 1996; 36: 909
[2]Ikegami Y, Nemoto R. ISIJ Int, 1996; 36: 855
[3]Hannien H, Romu J, Ilola R, Tervo J, Laitinen A.J Mater Process Technol, 2001; 117: 424
[4]Lee T H, Oh C S, Kim S J, Takaki S. Acta Mater,2007; 55: 3649
[5]Reed R P. JOM, 1989; 41: 16
[6]Speidel M O. Materialwiss Werkstofftech, 2006; 37:875
[7]Berns H, Siebert S. ISIJ Int, 1996; 36: 927
[8]Byrnes M L G, Grujicic M, Owen W S. Acta Metall,1987; 35: 1853
[9]Werner E. Mater Sci Eng, 1988; A101: 93
[10]Simmons J W. Mater Sci Eng, 1996; A207: 159
[11]Speidel M O, Pedrazzoli R M. Mater Perform, 1992;31: 59
[12]Rawers I C, White H, Doan R. ISIJ Int, 1996; 36:746
[13]Gavriljuk V G. ISIJ Int, 1996; 36: 738
[14]Ha H Y, Lee T H, Oh C S, Kim S J. Scr Mater, 2009;61: 121
[15]Hsiao C M. Acta Metall Sin, 1958; 3: 138
(肖纪美. 金属学报, 1958; 3: 138)
[16]Li Y K, Hsieh Y H, Kuo Y Y, Shih C H. Acta Metall Sin, 1966; 9: 33
(李有柯, 谢仰华, 郭蕴宜, 师昌绪. 金属学报, 1966; 9: 33)
[17]Kuo Y Y, Liu C L, Li Y K, Shih C H. Acta Metall Sin, 1964; 7: 409
(郭蕴宜, 刘嘉乐, 李有柯, 师昌绪. 金属学报, 1964; 7: 409)
[18]Kuo Y Y. Acta Metall Sin, 1965; 8: 467
(郭蕴宜. 金属学报, 1965; 8: 467)
[19]Chandra Holm H, Uggowitzer P J, Speidel M O. Scr Metall, 1987; 21: 513
[20]Kikuchi M, Kajihara M, Choi S K. Mater Sci Eng,1991; A146: 131
[21]Shi F, Wang L J, Cui W F, Liu C M. Acta Metall Sin (Engl Lett), 2007; 20: 95
[22]Carvalho P A, Machado I F, Solorzano G, Padilha A F.Philos Mag, 2008; 88: 229
[23]Lee T H, Kim S J, Takaki S. Metall Mater Trans,2006; 37A: 3445
[24]Presser R, Silcock J M. Met Sci, 1983; 17: 241
[25]Lee T H, Ha H Y, Kim S J. Metall Mater Trans,2011; 42A: 3543
[26]Matsuoka S, Mangan M A, Shiflet G J. In: Johnson W C, HoweJ W, Laughlin D E, Soffa W A eds., Proc Int Conf on Solid-Solid Phase Transformation, Warrendale, PA: The Minerals, Metals and Materials Society, 1994: 521
[27]Vanderschaeve F, Taillard R, Foct J. J Mater Sci, 1995; 30: 6035
[28]Knutsen R D, Lang C I, Basson J A. Acta Mater,2004; 52: 2407
[29]Santhi Srinivas N C, Kutumbarao V V. Scr Mater,1997; 37: 290
[30]Jiang Z H, Zhang Z R, Li H B, Li Z, Ma Q F. Int JMiner Metall Mater, 2010; 17: 729

No related articles found!