Please wait a minute...
金属学报  2017, Vol. 53 Issue (1): 19-30    DOI: 10.11900/0412.1961.2016.00213
  本期目录 | 过刊浏览 |
北京科技大学材料科学与工程学院 北京 100083
Phenomena of Σ3 and Orientation Gradients in an ElectricalSteel Appliedα→γ→α Transformation
Louwen ZHANG,Ping YANG(),Weimin MAO
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(7059 KB)   HTML

将超低碳无取向电工钢冷轧板在γ单相区加热,分别在H2和N2中使其发生α→γ→α相变,对超低碳无取向电工钢中的相变组织特征进行表征,并对其形成机理进行分析与讨论。结果表明,H2退火板中形成了强{100}取向单层饼状晶,且{100}取向晶粒的尺寸达到1 mm以上;而N2退火板表层为近{100}和{110}取向柱状晶,中心层则主要为{111}和{114}取向等轴晶。Σ3晶界普遍出现在发生取向择优的相变组织中,其形成机制与表面效应作用下诱发变体选择时所遵循的K-S关系密切相关;在N2退火板的柱状晶内部出现了近似线性的取向梯度,应为表层晶粒沿板材法向(ND)依靠γ→α相变长大受阻引起的相变应变累积造成的。

关键词 电工钢α→ γ → α 相变Σ 3晶界K-S关系取向梯度    

At present, the quality of commercial non-oriented electrical steels is improved mainly by optimizing deformation and recrystallization textures, but the most desirable {100} texture for the magnetic properties of sheets is normally no more than 20% in volume fraction. Throughα→γ→α transformation, however, the percentage of {100} texture can be up to 50%, even as high as 80% or more. The characteristics of transformation microstructure in ultra-low carbon non-oriented electrical steel are basically revealed in this work, and the formation mechanisms are analyzed and discussed. The cold-rolled sheets of electrical steels are heated inγ single phase region,α→γ→α transformation occurs in hydrogen and nitrogen atmosphere, respectively. The results indicate that strong {100} texture with monolayer pancake grains is developed in hydrogen, and the size of {100} oriented grains reaches more than 1 mm; whereas near {100} and {110} textured columnar grains are formed at the surface layer of the sheets in nitrogen, and the equal-axed grains with {111} and {114} textures in the center layer are obtained finally. Σ3 grain boundaries generally appear in the transformation microstructure where grain orientations are preferred, and its formation mechanism is closely related to K-S relationship which is followed during variant selection induced by surface-effect. There is an approximate linear orientation gradient in the columnar grains at the surface of the sheet annealed in nitrogen, and this phenomenon should be resulted from the accumulation of transformation strain induced by the suppression of the growth of surface grains withγ→α transformation along the normal direction.

Key wordselectrical steel    α→γ→α transformation    Σ 3 grain boundary    K-S relationship    orientation gradient
收稿日期: 2016-05-31      出版日期: 2016-11-16
基金资助:资助项目 国家自然科学基金项目No.51271028


章楼文,杨平,毛卫民. 电工钢相变组织中的Σ3和取向梯度现象[J]. 金属学报, 2017, 53(1): 19-30.
Louwen ZHANG,Ping YANG,Weimin MAO. Phenomena of Σ3 and Orientation Gradients in an ElectricalSteel Appliedα→γ→α Transformation. Acta Metall Sin, 2017, 53(1): 19-30.

链接本文:      或

图1  样品1经Q1工艺退火后横截面的EBSD分析
图2  样品1经Q1工艺退火后表面的EBSD分析
图3  图1c和2c中直线测量的晶内取向差分布
图4  样品2经Q2工艺退火后横截面的EBSD分析
图5  样品2经Q2工艺退火后表面的EBSD分析
图6  样品2经Q2工艺退火后表面显微组织OM像
图7  图4c和5c中沿直线测量的晶内取向梯度
图8  样品2经Q2工艺退火后中心层的EBSD分析
图9  样品2在700℃再结晶退火后轧面的EBSD分析
图10  {100}取向大晶粒以及Σ3晶界形成过程示意图
[1] Liu H T, Liu Z Y, Sun Y, et al.Formation of {001}<510> recrystallization texture and magnetic property in strip casting non-oriented electrical steel[J]. Mater. Lett., 2012, 81: 65
[2] Liu H T, Schneider J, Li H L, et al.Fabrication of high permeability non-oriented electrical steels by increasing <001> recrystallization texture using compacted strip casting processes[J]. J. Magn. Magn. Mater., 2015, 374: 577
[3] Liu H T, Liu Z Y, Sun Y, et al.Development ofλ-fiber recrystallization texture and magnetic property in Fe-6.5wt% Si thin sheet produced by strip casting and warm rolling method[J]. Mater. Lett., 2013, 91: 150
[4] Hashimoto O, Satoh S, Tanaka T.Effects of initial texture onα→γ→α transformation texture in sheet steel[J]. Tetsu Hagané, 1980, 66: 112
[4] (橋本修, 佐藤進, 田中智夫. 薄鋼板のα→γ→α変態集合組織に及ぼす初期方位の影響[J]. 鉄と鋼, 1980, 66: 112)
[5] Zhang L W, Yang P, Wang J H, et al.Transformation of {100} texture induced by surface effect in ultra-low carbon electrical steel[J]. J. Mater. Sci., 2016, 51: 8087
[6] Aspden R G, Berger J A, Trout H E.Anisotropic and heterogeneous nucleation during the gamma to alpha transformation in iron[J]. Acta Metall., 1968, 16: 1027
[7] Tomida T.(100)-textured 3% silicon steel sheets by manganese removal and decarburization[J]. J. Appl. Phys., 1996, 79: 5443
[8] Tomida T, Tanak T.Development of (100) texture in silicon steel sheets by removal of manganese and decarburization[J]. ISIJ Int., 1995, 35: 548
[9] Tomida T.A new process to develop (100) texture in silicon steel sheets[J]. J. Mater. Eng. Perform., 1996, 5: 316
[10] Sung J K, Lee D N, Wang D H, et al.Efficient generation of cube-on-face crystallographic texture in iron and its alloys[J]. ISIJ Int., 2011, 51: 284
[11] Sung J K, Koo Y M. Magnetic properties of Fe and Fe-Si alloys with {100}〈0vw〉 texture [J]. J. Appl. Phys., 2013, 113: 17A338
[12] Sung J K, Park S M, Shim B Y, et al. Effect of Mn on <100> texture evolution in Fe-Si-Mn alloys [J]. Mater. Sci. Forum, 2012, 702-703: 730
[13] Xie L, Yang P, Zhang N, et al.Formation of {100} textured columnar grain structure in a non-oriented electrical steel by phase transformation[J]. J. Magn. Magn. Mater., 2014, 356: 1
[14] Elban W L, Hebbar M A, Kramer J J.Adsorption surface energy and crystal growth in iron-3 pct silicon[J]. Metall. Trans., 1975, 6A: 1929
[15] Kohler D.Promotion of cubic grain growth in 3% silicon iron by control of annealing atmosphere composition[J]. J. Appl. Phys., 1960, 31: S408
[16] Assmus F, Bull R, Ganz D, et al.On iron-silicon with cube texture magnetic investigation[J]. Z. Metallkd., 1957, 48: 341
[17] Kim K M, Kim H K, Park J Y, et al.{100} texture evolution in bcc Fe sheets-computational design and experiments[J]. Acta Mater., 2016, 106: 106
[18] Gautam J, Petrov R H, Leunis E, et al.Nucleation and growth of surface texture duringα→γ→α transformation in ultra low carbon steel alloyed with Mn, Al and Si[J]. Solid State Phenom., 2010, 160: 223
[19] Wenk H R, Rybacki E, Dresen G, et al.Dauphiné twinning and texture memory in polycrystalline quartz. Part 1: Experimental deformation of novaculite[J]. Phys. Chem. Miner., 2006, 33: 667
[20] Nakada N, Tsuchiyama T, Takaki S, et al.Variant selection of reversed austenite in lath martensite[J]. ISIJ Int., 2007, 47: 1527
[21] Yoshinaga N, Inoue H, Kawasaki K, et al.Factors affecting texture memory appearing throughα→γ→α transformation in IF steels[J]. Mater. Trans., 2007, 48: 2036
[22] Wenk H R, Huensche I, Kestens L.In-situ observation of texture changes during phase transformations in ultra-low-carbon steel[J]. Metall. Mater. Trans., 2007, 38A: 261
[23] Brückner G, Gottstein G.Transformation textures during diffusionalα→γ→α phase transformations in ferritic steels[J]. ISIJ Int., 2001, 41: 468
[24] Yoshinaga N, Ushioda K, Itami A, et al.α+γ andγ phases annealing in ultra low-carbon sheet steels[J]. ISIJ Int., 1994, 34: 33
[25] Tomida T, Imai N, Miyata K, et al.Grain refinement of C-Mn steel to 1 μm by rapid cooling and short interval multi-pass hot rolling in stable austenite region[J]. ISIJ Int., 2008, 48: 1148
[26] Tomida T, Wakita M, Yoshida M, et al. A variant selection rule in transformation in steel and prediction of transformation texture [J]. Mater. Sci. Forum, 2010, 638-642: 2846
[27] Tomida T, Wakita M.Transformation texture in hot-rolled steel sheets and its quantitative prediction[J]. ISIJ Int., 2012, 52: 601
[28] Tomida T, Wakita M, Yasuyama M, et al.Memory effects of transformation textures in steel and its prediction by the double Kurdjumov - Sachs relation[J]. Acta Mater., 2013, 61: 2828
[29] Gomes E, Verbeken K, Gautam J, et al.Evolution of the microstructural surface characteristics during annealing[J]. Mater. Sci. Eng., 2013, A561: 312
[30] Lü Y P, Hutchinson B, Molodov D A, et al.Effect of deformation and annealing on the formation and reversion ofε-martensite in an Fe-Mn-C alloy[J]. Acta Mater., 2010, 58: 3079
[31] Lischewski I, Gottstein G.Nucleation and variant selection during theα→γ→α phase transformation in microalloyed steel[J]. Acta Mater., 2011, 59: 1530
[32] Xie L, Yang P, Xia D S, et al.Microstructure and texture evolution in a non-oriented electrical steel duringγ→α transformation under various atmosphere conditions[J]. J. Magn. Magn. Mater., 2015, 374: 655
[33] Baghat M, Sasaki Y, Iguchi M, et al.The effect of grain boundaries on the surface rearrangement during wüstite reduction within its range of existence[J]. ISIJ Int., 2005, 45: 657
[1] 顾晨, 杨平, 毛卫民. 轧制工艺对低牌号无取向电工钢相变退火组织、织构与磁性能的影响[J]. 金属学报, 2019, 55(2): 181-190.
[2] 莫远科,张志豪,谢建新,潘洪江. 再结晶退火对高硅电工钢冷轧带材组织、有序结构和力学性能的影响*[J]. 金属学报, 2016, 52(11): 1363-1371.
[3] 付勇军, 杨平, 蒋奇武, 王晓达, 金文旭. Fe-3%Si电工钢铸坯柱状晶织构的演变规律*[J]. 金属学报, 2015, 51(5): 545-552.
[4] 邵媛媛, 杨平, 毛卫民. 电工钢柱状晶热、冷轧时晶界作用分析[J]. 金属学报, 2014, 50(3): 259-268.
[5] 夏冬生, 杨平, 谢利, 毛卫民. 升温速率对低碳无取向电工钢脱碳退火组织及织构的影响[J]. 金属学报, 2014, 50(12): 1437-1445.
[6] 张宁 杨平 毛卫民. 柱状晶对Fe-3%Si电工钢冷轧织构演变规律的影响[J]. 金属学报, 2012, 48(7): 782-788.
[7] 张宁 杨平 毛卫民. 柱状晶对Fe-3%Si电工钢再结晶织构演变规律的影响[J]. 金属学报, 2012, 48(3): 307-314.