Please wait a minute...
金属学报  2023, Vol. 59 Issue (3): 349-370    DOI: 10.11900/0412.1961.2022.00480
  综述 本期目录 | 过刊浏览 |
镁基材料中储氢相及其界面与储氢性能的调控
李谦1,2,3, 孙璇3, 罗群3, 刘斌3, 吴成章3, 潘复生1,2()
1 重庆大学 国家镁合金材料工程技术研究中心 重庆 400044
2 重庆大学 材料科学与工程学院 重庆 400044
3 上海大学 材料科学与工程学院 省部共建高品质特殊钢冶金与制备国家重点实验室 上海 200444
Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance
LI Qian1,2,3, SUN Xuan3, LUO Qun3, LIU Bin3, WU Chengzhang3, PAN Fusheng1,2()
1 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China
2 School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
3 State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
引用本文:

李谦, 孙璇, 罗群, 刘斌, 吴成章, 潘复生. 镁基材料中储氢相及其界面与储氢性能的调控[J]. 金属学报, 2023, 59(3): 349-370.
Qian LI, Xuan SUN, Qun LUO, Bin LIU, Chengzhang WU, Fusheng PAN. Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. Acta Metall Sin, 2023, 59(3): 349-370.

全文: PDF(6034 KB)   HTML
摘要: 

镁基储氢材料因储氢密度高、资源丰富、环境友好等优点而备受关注,但其存在吸/放氢温度过高、反应动力学缓慢和循环稳定性差等缺点,阻碍了其大规模产业化进程。尽管镁基储氢材料在新合金体系开发、纳米调控、催化修饰、多相复合等方面取得了巨大进展,但如何获取兼具吸/放氢容量高、温度适中、反应速率快及寿命长等优良性能的镁基储氢材料仍是一个挑战。本文较为系统地总结了镁基材料中储氢相及其界面的种类,论述了其微观组织/界面特征的调控策略和方法。重点探讨了储氢相组成、微观结构及其表/界面结构调控效果对提升储氢热力学与动力学性能的影响规律与作用机制,展望了通过调控储氢相及其界面来设计镁基储氢材料的前景和发展方向。

关键词 镁基储氢材料储氢相表/界面结构储氢性能调控策略    
Abstract

Mg-based hydrogen storage materials have drawn a lot of attention due to the merit of high hydrogen storage density, earth-abundant resources, and environmental friendliness. However, the slow kinetics, high hydrogen absorption/desorption temperature, and poor cycling stability of Mg-based hydrogen storage materials prevent them from being used on a large scale. The developments of new alloys, nano-structure control, catalytic modification, and multiphase composites, among other things, have made significant progress in Mg-based hydrogen storage materials in recent years. However, challenges still exist, such as high hydrogen storage capacity, moderate adsorption/desorption temperature, rapid reaction rate, and long cycling life. In this review paper, the types of hydrogen storage phases and their interface in Mg-based materials, and the control methods of their microstructure/interface characteristics are systematically summarized. The mechanism of the hydrogen storage phase, microstructure, and surface/interface modifications on the improved thermal/kinetic performance of hydrogen storage are highlighted. This review concludes with an outlook and prospects on the challenge of designing Mg-based hydrogen storage materials by controlling the hydrogen storage phase and the corresponding interface.

Key wordsMg-based hydrogen storage material    hydrogen storage phase    surface/interface structure    hydrogen storage performance    regulation strategy
收稿日期: 2022-09-28     
ZTFLH:  TG139  
基金资助:国家自然科学基金项目(U2102212)
作者简介: 李 谦,男,1975年生,教授,博士
HydrogenPearsonSpace groupLatticeHydrideHydrogen storageRef.
storagesymbolparametercapacity
phasenm(mass fraction, %)
MghP2P63/mmca = b = 0.32, c = 0.52MgH27.60[19]
Mg2NihP18P6222a = b = 0.52, c = 1.32Mg2NiH43.62[25]
Mg2CuoF48Fddda = 0.91, b = 1.8,MgH22.53[25]
c = 0.53
Mg17Al12cI58I4¯3mbcc a = 1.06MgH24.40[19]
Mg3LacF16Fm3¯mbcc a = 0.75MgH2, LaH x (x = 2-3)2.89[26]
Mg17La2hP38P63/mmca = b = 1.04,MgH2, LaH x (x = 2-3)4.87[27,38]
c =1.02
Mg12CetI26I4/mmma = b = 1.03, c = 0.60MgH2, CeH2.735.68[28]
Mg3CecF16Fm3¯mbcc a = 0.74MgH2, CeH2.733.62[28]
Mg12NdtI26I4/mmma = b = 1.03, c = 0.59MgH2, NdH2.615.63[29]
Mg24Y5cI58I4¯3mbcc a = 1.13MgH2, YH x (x = 2-3)5.34[30]

18R-LPSO

(Mg85Zn6Y9)

-C2/ma = 1.11, b = 1.93,MgH2, YH x (x = 2-3)4.60-5.30[31]
c = 1.60
18R-LPSO-P6322a = b = 0.31, c = 4.86MgH2, Mg2NiH4, YH x4.60[32]
(Mg12YNi)(x = 2-3)
14H-LPSO-P63/mcma = b = 1.11, c = 3.66MgH2, YH x (x = 2-3)5.48[33]
(Mg92Cu3.5Y4.5)
Nd4Mg80Ni8tI92I41/amda = b = 1.27, c = 1.59MgH2, Mg2NiH4, NdH2.614.94[37]
Nd16Mg96Ni12oS124Cmc21a = 1.53, b = 2.17,MgH2, Mg2NiH4, NdH2.613.92[36]
c = 0.95
NdMg2NioS16Cmcma = 0.41, b = 1.02,MgH2, Nd2.612.07[39]
c = 0.83
LaMg2NioS16Cmcma = 0.42, b = 1.03,LaMg2NiH71.92[39]
c = 0.84
La2MgNi9hR36R3¯ma = b = 0.50, c = 2.43La2MgNi9H121.60[40]
LaMgNi4cF24F4¯3mbcc a =0.72LaMgNi4H71.40[41]
2H-La3MgNi14-P63/mmca = b = 0.50, c = 2.42La3MgNi14H18-[34]
3R-La3MgNi14-R3¯ma = b = 0.50, c = 3.61
2H-La4MgNi19-P63/mmca = b = 0.50, c = 3.23La4MgNi19H241.50[35]
3R-La4MgNi19-R3¯ma = b = 0.50, c = 4.82
表1  不同体系镁基储氢相的晶体结构和储氢容量[19,25~41]
图1  高压扭转(HPT)处理0~1500道次Mg4NiPd的SEM-EDS图,及HPT处理1500道次Mg4NiPd的元素分布、XRD谱和微观组织TEM分析[70]
图2  氢等离子体金属反应(HPMR)法制备的镁基纳米颗粒,磁控溅射制备Mg-Nb合金薄膜,及气相反应合成的Mg纳米线SEM像[21,22,75]
RegulatorySampleHydrogen storageParticleMicrostructural characteristicRef.
methodstatusphasegrain size
SmeltingBulkMg, Mg-TM,SeveralLarge grain/phase size, limited interface fraction[56,57]
Mg-RE,hundreds of
Mg-TM-REmicrons
Melt-spinningRibbonMg-Ni,-Amorphous or nano/amorphous composite structure, interfaces between amorphous and nanocrystalline[58,59]
Mg-Ni-RE
PowderBulkMg-basedTens ofHigh porosity, core/shell structure, plenty of vacancies and cracks defect, phase/grain boundary[60-62]
metallurgycomposite phasemicrons
SevereBulkMg-basedMicro/nanoUltra-fine grain, high density grain/phase boundaries, twin boundaries, dislocation, stacking fault, texture[70-73]
plasticmetastablegrain size
deformationphase
VaporPowder/Mg, Mg-TM,20-600 nmNano-particles, nano-films, nano-wires, surface structure, surface orientation, interfacial energy, interfacial stress[21,22]
depositionthin film/Mg-Al, Mg-V,
wireMg-Y
ChemicalPowderMg, Mg-TM10-20 nmNano-particles, core/shell structure, high purity, high specific surface area[77-79]
reduction
MechanicalPowderMg, Mg-TM,Micro/nano sizeNano/amorphous composite structure, bcc crystal structure, crystal defect, metastable structural interface[81-83]
alloyingMg-RE,
Mg-TM-RE
表2  不同调控方法下镁基材料储氢相及组织/界面对比[21,22,56~62,70~73,77~79,81~83]
Metastable phaseLattice parameter / nmDecompositionHydrideHydrogen storageRef.
temperatureperformance
K(mass fraction)
Mg2Ti

bcc a = 0.345

fcc a = 0.429

hcp-I a = 0.319, c = 0.517

hcp-II a = 0.297, c = 0.514

643MgH2,-[68]
TH2

Mg-50%Zr

(atomic fraction)

bcc a = 0.3566

fcc a = 0.44-0.46

hcp a = 0.321, c = 0.516

> 773

-

Absorb: 1.0%

(20 s, 303 K, 9 MPa)

[67]

MgVCrbcc a = 0.295> 573-Absorb 0.9% H2 and the reversibility is 0.4% at 303 K[69]
MgV2Crbcc a = 0.294573MgH2
Mg-V-Snb2-type structure a = 0.360---[65]
Mg-V-Pdb2-type structure a = 0.316---
Mg-V-Nibcc a = 0.325---
Mg-Ni-Pdbcc-based CsCl-type structure440-0.7% reversible hydrogen[70]
a = 0.319absorption and desorption
at 305 K
表3  HPT工艺制备的不同镁基亚稳相[65,67~70]
图3  Mg55Co45合金样品的SEM和TEM像、XRD谱及258 K时Mg55Co45 bcc合金的压力-成分-温度(PCT)曲线[84]
图4  不同纳米结构Mg的吸氢动力学对比[21,75,76,94]
图5  Mg85Ni14Ce1非晶薄膜中F300、F2*250和F10*50样品截面的SEM像和393 K下的放氢动力学[103]
图6  Mg65Ce10Ni20Cu5合金经1、5和10道次HPT工艺前后的XRD谱,熔体快淬和HPT处理1道次后合金的吸氢动力学,及HPT处理1道次后样品的HRTEM像[104]
图7  HPT处理不同转数下Mg样品的OM像、TEM像和SAED花样,及退火样品和经HPT处理0.25和10转数样品的吸氢动力学曲线[66]
图8  HPT处理10道次并在673 K退火后的Mg2Ni样品TEM像和HRTEM分析,有无堆垛层错缺陷的粗晶Mg2Ni的吸氢动力学曲线,及层错缺陷作为氢传输途径的示意图[55]
图9  不同工艺处理纯Mg的EBSD图和相应的极图,不同工艺下纯Mg活化后的吸氢动力学,及熔体快淬(MS)和熔体快淬-冷轧(MS-CR)样品的放氢动力学[52]
图10  5.28%Ni (质量分数)粉末冷喷涂Mg带材后的侧面和表面的形貌及元素分布,423 K、8 × 105 Pa下不同样品的吸氢动力学,及473 K、2 × 104 Pa下不同样品的放氢动力学[111]
图11  累积叠轧(ARB) 30道次Mg-LaNi5-Soot样品TEM明场像(横截面),累积叠轧5道次Mg-LaNi5-Soot样品横截面TEM明场像,累积叠轧30道次Mg-Soot样品横截面TEM明场像和EDS线扫描叠加的暗场像,及ARB和氢化30 s后Mg-LaNi5-Soot样品横截面微观示意图[115]
1 Zhu M, Ouyang L Z. Kinetics tuning and electrochemical performance of Mg-based hydrogen storage alloys [J]. Acta Metall. Sin., 2021, 57: 1416
doi: 10.11900/0412.1961.2021.00336
1 朱 敏, 欧阳柳章. 镁基储氢合金动力学调控及电化学性能 [J]. 金属学报, 2021, 57: 1416
2 Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications [J]. Nature, 2001, 414: 353
doi: 10.1038/35104634
3 Cohen R L, Wernick J H. Hydrogen storage materials: Properties and possibilities [J]. Science, 1981, 214: 1081
pmid: 17755872
4 An X H, Pan Y B, Luo Q, et al. Application of a new kinetic model for the hydriding kinetics of LaNi5 - x Al x (0 ≤ x≤ 1.0) alloys [J]. J. Alloys Compd., 2010, 506: 63
doi: 10.1016/j.jallcom.2010.07.016
5 Ding W J, Zeng X Q. Research and applications of magnesium in China [J]. Acta Metall. Sin., 2010, 46: 1450
doi: 10.3724/SP.J.1037.2010.01450
5 丁文江, 曾小勤. 中国Mg材料研发与应用 [J]. 金属学报, 2010, 46: 1450
doi: 10.3724/SP.J.1037.2010.00386
6 Fang W B, Zhang W C, Yu Z X, et al. Recent development of Mg-based hydrogen storage material [J]. Chin. J. Nonferrous Met., 2002, 12: 853
6 房文斌, 张文丛, 于振兴 等. 镁基储氢材料的研究进展 [J]. 中国有色金属学报, 2002, 12: 853
7 Feng Y, Chen C, Peng C Q, et al. Research progress on magnesium matrix composites [J]. Chin. J. Nonferrous Met., 2017, 27: 2385
7 冯 艳, 陈 超, 彭超群 等. 镁基复合材料的研究进展 [J]. 中国有色金属学报, 2017, 27: 2385
8 Li Q, Lu Y F, Luo Q, et al. Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials [J]. J. Magnes. Alloy., 2021, 9: 1922
doi: 10.1016/j.jma.2021.10.002
9 Zhang Q Y, Du S C, Ma Z W, et al. Recent advances in Mg-based hydrogen storage materials [J]. Chin. Sci. Bull., 2022, 67: 2158
doi: 10.1360/TB-2021-0430
9 张秋雨, 杜四川, 马哲文 等. 镁基储氢材料的研究进展 [J]. 科学通报, 2022, 67: 2158
10 Zhou G Z, Li Q. Thermodynamics and kinetics of magnesium-based hydrogen storage material [J]. Chin. J. Nat., 2011, 33: 6
10 周国治, 李 谦. 镁基储氢材料的热力学和动力学 [J]. 自然杂志, 2011, 33: 6
11 Liu J, Li Q, Zhou G Z, et al. Model investigation of hydrogen absorption and desorption kinetics of nanocrystalline magnesium [J]. Rare Met. Mater. Eng., 2007, 36: 1802
11 刘 静, 李 谦, 周国治 等. 纳米晶镁粉的吸放氢动力学模型分析 [J]. 稀有金属材料与工程, 2007, 36: 1802
12 Wu G X, Zhang J Y, Wu Y Q, et al. First-principle calculations of the adsorption, dissociation and diffusion of hydrogen on the Mg (0001) surface [J]. Acta Phys. Chim. Sin., 2008, 24: 55
doi: 10.1016/S1872-1508(08)60006-6
13 Zeng X Q, Ding W J, Ying Y J, et al. Research progress of Mg-based energy materials [J]. Mater. China, 2011, 30(2): 35
13 曾小勤, 丁文江, 应燕君 等. 镁基能源材料研究进展 [J]. 中国材料进展, 2011, 30(2): 35
14 Wu X J, Xue H Q, Peng Y, et al. Research progress of Mg and Mg-based alloy hydrogen storage materials [J]. Rare Met. Mater. Eng., 2022, 51: 727
14 武晓娟, 薛华庆, 彭 涌 等. 镁及镁合金储氢材料的研究进展 [J]. 稀有金属材料与工程, 2022, 51: 727
15 El-Eskandarany M S, Shaban E, Aldakheel F, et al. Synthetic nanocomposite MgH2/5 wt.% TiMn2 powders for solid-hydrogen storage tank integrated with PEM fuel cell [J]. Sci. Rep., 2017, 7: 13296
doi: 10.1038/s41598-017-13483-0 pmid: 29038594
16 Lin H J, Lu Y S, Zhang L T, et al. Recent advances in metastable alloys for hydrogen storage: A review [J]. Rare Met., 2022, 41: 1797
doi: 10.1007/s12598-021-01917-8
17 Ding X, Chen R R, Zhang J X, et al. Recent progress on enhancing the hydrogen storage properties of Mg-based materials via fabricating nanostructures: A critical review [J]. J. Alloys Compd., 2022, 897: 163137
doi: 10.1016/j.jallcom.2021.163137
18 Liu J, Li Q, Zhou G Z. La0.67Mg0.33Ni3 alloy prepared by magnetic field assisted sintering synthesis [J]. Rare Met. Mater. Eng., 2013, 42: 392
18 刘 静, 李 谦, 周国治. 磁场辅助烧结法制备La0 . 67Mg 0.33Ni3储氢合金 [J]. 稀有金属材料与工程, 2013, 42: 392
19 Shang Y Y, Pistidda C, Gizer G, et al. Mg-based materials for hydrogen storage [J]. J. Magnes. Alloy., 2021, 9: 1837
doi: 10.1016/j.jma.2021.06.007
20 House S D, Vajo J J, Ren C, et al. Effect of ball-milling duration and dehydrogenation on the morphology, microstructure and catalyst dispersion in Ni-catalyzed MgH2 hydrogen storage materials [J]. Acta Mater., 2015, 86: 55
doi: 10.1016/j.actamat.2014.11.047
21 Li W Y, Li C S, Ma H, et al. Magnesium nanowires: Enhanced kinetics for hydrogen absorption and desorption [J]. J. Am. Chem. Soc., 2007, 129: 6710
pmid: 17488082
22 Shao H Y, Xin G B, Zheng J, et al. Nanotechnology in Mg-based materials for hydrogen storage [J]. Nano Energy, 2012, 1: 590
doi: 10.1016/j.nanoen.2012.05.005
23 Huang Y Q, Xia G L, Chen J, et al. One-step uniform growth of magnesium hydride nanoparticles on graphene [J]. Prog. Natl. Sci., 2017, 27: 81
doi: 10.1016/j.pnsc.2016.12.015
24 Li Q, Zhou G Z. Relationships between key phases and their interfaces with properties in rare earth-magnesium alloys [J]. Chin. J. Nonferrous Met., 2019, 29: 1934
24 李 谦, 周国治. 稀土镁合金中关键相及其界面与性能的相关性 [J]. 中国有色金属学报, 2019, 29: 1934
25 Ouyang L Z, Liu F, Wang H, et al. Magnesium-based hydrogen storage compounds: A review [J]. J. Alloys Compd., 2020, 832: 154865
doi: 10.1016/j.jallcom.2020.154865
26 Ouyang L Z, Qin F Z, Zhu M. The hydrogen storage behavior of Mg3La and Mg3LaNi0.1 [J]. Scr. Mater., 2006, 55: 1075
doi: 10.1016/j.scriptamat.2006.08.052
27 Sun D L, Gingl F, Nakamura Y, et al. In situ X-ray diffraction study of hydrogen-induced phase decomposition in LaMg12 and La2Mg17 [J]. J. Alloys Compd., 2002, 333: 103
doi: 10.1016/S0925-8388(01)01712-1
28 Zhang X, Kevorkov D, Pekguleryuz M O. Study on the binary intermetallic compounds in the Mg-Ce system [J]. Intermetallics, 2009, 17: 496
doi: 10.1016/j.intermet.2009.01.002
29 Zhai C, Luo Q, Cai Q, et al. Thermodynamically analyzing the formation of Mg12Nd and Mg41Nd5 in Mg-Nd system under a static magnetic field [J]. J. Alloys Compd., 2019, 773: 202
doi: 10.1016/j.jallcom.2018.09.203
30 Zhang J, Mao C, Long C G, et al. Phase stability, elastic properties and electronic structures of Mg-Y intermetallics from first-principles calculations [J]. J. Magnes. Alloy., 2015, 3: 127
doi: 10.1016/j.jma.2015.03.003
31 Ishikawa K, Kawasaki T, Yamada Y. Hydrogenation behavior of Mg85Zn6Y9 crystalline alloy with long period stacking ordered structure [J]. Int. J. Hydrogen Energy, 2015, 40: 13014
doi: 10.1016/j.ijhydene.2015.07.103
32 Zhang Q A, Liu D D, Wang Q Q, et al. Superior hydrogen storage kinetics of Mg12YNi alloy with a long-period stacking ordered phase [J]. Scr. Mater., 2011, 65: 233
doi: 10.1016/j.scriptamat.2011.04.014
33 Chen R R, Ding X, Chen X Y, et al. In-situ hydrogen-induced evolution and de-/hydrogenation behaviors of the Mg93Cu7 - x Y x alloys with equalized LPSO and eutectic structure [J]. Int. J. Hydrogen Energy, 2019, 44: 21999
doi: 10.1016/j.ijhydene.2019.06.089
34 Nakamura J, Iwase K, Hayakawa H, et al. Structural study of La4MgNi19 hydride by in situ X-ray and neutron powder diffraction [J]. J. Phys. Chem., 2009, 113C: 5853
35 Zhang Q A, Fang M H, Si T Z, et al. Phase stability, structural transition, and hydrogen absorption-desorption features of the polymorphic La4MgNi19 compound [J]. J. Phys. Chem., 2010, 114C: 11686
36 Li Q, Luo Q, Gu Q F. Insights into the composition exploration of novel hydrogen storage alloys: Evaluation of the Mg-Ni-Nd-H phase diagram [J]. J. Mater. Chem., 2017, 5A: 3848
37 Luo Q, Gu Q F, Liu B, et al. Achieving superior cycling stability by in situ forming NdH2-Mg-Mg2Ni nanocomposites [J]. J. Mater. Chem., 2018, 6A: 23308
38 Liu J, Zhang X, Li Q, et al. Investigation on kinetics mechanism of hydrogen absorption in the La2Mg17-based composites [J]. Int. J. Hydrogen Energy, 2009, 34: 1951
doi: 10.1016/j.ijhydene.2008.12.040
39 Pei L C, Han S M, Wang J S, et al. Hydrogen storage properties and phase structures of RMg2Ni (R = La, Ce, Pr, Nd) alloys [J]. Mater. Sci. Eng., 2012, B177: 1589
40 Son V B, Volodin A A, Denys R V, et al. Hydrogen sorption and electrochemical properties of intermetallic compounds La2MgNi9 and La1.9Mg1.1Ni9 [J]. Russ. Chem. Bull., 2016, 65: 1971
doi: 10.1007/s11172-016-1538-1
41 Li H X, Wan C B, Li X C, et al. Structural, hydrogen storage, and electrochemical performance of LaMgNi4 alloy and theoretical investigation of its hydrides [J]. Int. J. Hydrogen Energy, 2022, 47: 1723
doi: 10.1016/j.ijhydene.2021.10.135
42 Liu Y F, Pan H G, Gao M X, et al. Investigation on the structure and electrochemical properties of the rare-earth Mg-based hydrogen storage electrode alloys [J]. Acta Metall. Sin., 2003, 39: 666
42 刘永锋, 潘洪革, 高明霞 等. 稀土镁基贮氢电极合金的结构与电化学性能研究 [J]. 金属学报, 2003, 39: 666
43 Luo Q, Guo Y L, Liu B, et al. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review [J]. J. Mater. Sci. Technol., 2020, 44: 171
doi: 10.1016/j.jmst.2020.01.022
44 Zhang J X, Ding X, Chen R R, et al. Design of LPSO-introduced Mg96Y2Zn2 alloy and its improved hydrogen storage properties catalyzed by in-situ formed YH2 [J]. J. Alloys Compd., 2022, 910: 164832
doi: 10.1016/j.jallcom.2022.164832
45 Sun Y, Wang D B, Wang J M, et al. Hydrogen storage properties of ultrahigh pressure Mg12NiY alloys with a superfine LPSO structure [J]. Int. J. Hydrogen Energy, 2019, 44: 23179
doi: 10.1016/j.ijhydene.2019.06.191
46 Zhang J X, Ding X, Chen R R, et al. Comparative study of solid-solution treatment and hot-extrusion on hydrogen storage performance for Mg96Y2Zn2 alloy: The nonnegligible role of elements distribution [J]. J. Power Sources, 2022, 548: 232037
doi: 10.1016/j.jpowsour.2022.232037
47 He J H, Zhang J, Zhou X J, et al. Hydrogen storage properties of Mg98.5Gd1Zn0.5 and Mg98.5Gd0.5Y0.5Zn0.5 alloys containing LPSO phases [J]. Int. J. Hydrogen Energy, 2021, 46: 32949
doi: 10.1016/j.ijhydene.2021.07.140
48 Li Q. Design of Mg-based multicomponent hydrogen storage alloys based on thermodynamic and kinetic calculations and physical chemistry of hydrogenation reaction [J]. Mater. China, 2015, 34: 698
48 李 谦. 基于热力学和动力学计算的镁基多元储氢合金设计及其氢化反应的物理化学 [J]. 中国材料进展, 2015, 34: 698
49 Zhao X J, Li Q, Chou K, et al. Effect of Co substitution for Ni and magnetic-heat treatment on the structures and electrochemical properties of La-Mg-Ni-type hydrogen storage alloys [J]. J. Alloys Compd., 2009, 473: 428
doi: 10.1016/j.jallcom.2008.05.108
50 Conrad H, Ertl G, Latta E E. Adsorption of hydrogen on palladium single crystal surfaces [J]. Surf. Sci., 1974, 41: 435
doi: 10.1016/0039-6028(74)90060-0
51 Han Z Y, Chen H P, Zhou S X. Dissociation and diffusion of hydrogen on defect-free and vacancy defective Mg (0001) surfaces: A density functional theory study [J]. Appl. Surf. Sci., 2017, 394: 371
doi: 10.1016/j.apsusc.2016.10.101
52 Botta W J, Jorge Jr A M, Veron M, et al. H-sorption properties and structural evolution of Mg processed by severe plastic deformation [J]. J. Alloys Compd., 2013, 580(suppl.1) : S187
53 Song W J, Dong H P, Zhang G, et al. Enhanced hydrogen absorption kinetics by introducing fine eutectic and long-period stacking ordered structure in ternary eutectic Mg-Ni-Y alloy [J]. J. Alloys Compd., 2020, 820: 153187
doi: 10.1016/j.jallcom.2019.153187
54 Liang H, Li J, Shen X H, et al. The study of amorphous La@Mg catalyst for high efficiency hydrogen storage [J]. Int. J. Hydrogen Energy, 2022, 47: 18404
doi: 10.1016/j.ijhydene.2022.04.032
55 Hongo T, Edalati K, Arita M, et al. Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion [J]. Acta Mater., 2015, 92: 46
doi: 10.1016/j.actamat.2015.03.036
56 Ding X, Chen R R, Chen X Y, et al. A novel method towards improving the hydrogen storage properties of hypoeutectic Mg-Ni alloy via ultrasonic treatment [J]. J. Magnes. Alloy., 2021, doi: 10.1016/j.jma.2021.06.003
57 Fu H, Wu W S, Dou Y, et al. Hydrogen diffusion kinetics and structural integrity of superhigh pressure Mg-5 wt% Ni alloys with dendrite interface [J]. J. Power Sources, 2016, 320: 212
doi: 10.1016/j.jpowsour.2016.04.045
58 Luo Q, Li J D, Li B, et al. Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism [J]. J. Magnes. Alloy., 2019, 7: 58
doi: 10.1016/j.jma.2018.12.001
59 Lin H J, Ouyang L Z, Wang H, et al. Hydrogen storage properties of Mg-Ce-Ni nanocomposite induced from amorphous precursor with the highest Mg content [J]. Int. J. Hydrogen Energy, 2012, 37: 14329
doi: 10.1016/j.ijhydene.2012.07.073
60 Knotek V, Ekrt O, Michalcová A, et al. Electrochemical hydriding of nanocrystalline Mg-Ni-X (X = Co, Mn, Nd) alloys prepared by mechanical alloying and spark plasma sintering [J]. J. Alloys Compd., 2017, 726: 787
doi: 10.1016/j.jallcom.2017.08.059
61 Song X P, Zhang P L, Pei P, et al. The role of spark plasma sintering on the improvement of hydrogen storage properties of Mg-based composites [J]. Int. J. Hydrogen Energy, 2010, 35: 8080
doi: 10.1016/j.ijhydene.2010.01.048
62 Liu D M, Si T Z, Wang C C, et al. Phase component, microstructure and hydrogen storage properties of the laser sintered Mg-20wt.% LaNi5 composite [J]. Scr. Mater., 2007, 57: 389
doi: 10.1016/j.scriptamat.2007.05.011
63 Li Q, Wu Z, Lu X G, et al. Hydrogen sorption-desorption properties of Mg-Ni-Ti0.32Cr0.35V0.07Fe0.26 composite by mechanochemical syntyhsis [J]. Rare Met. Mater. Eng., 2007, 36: 1672
63 李 谦, 吴 铸, 鲁雄刚 等. 机械化学法制备Mg-Ni-Ti0.32Cr0.35V0.07-Fe0.26复合材料的储放氢性能 [J]. 稀有金属材料与工程, 2007, 36: 1672
64 Zhu W H, Zhu M, Luo K C, et al. Mechanical alloying induced solid state reaction and formation of nano-phase composite hydrogen storage alloys in MmNi5 - x (Co, Al, Mn) x /Mg system [J]. Acta Metall. Sin., 1999, 35: 541
64 朱文辉, 朱 敏, 罗堪昌 等. 高能球磨在MmNi5 - x (Co, Al, Mn) x /Mg体系中诱发的固态反应及纳米相复合储氢合金的形成 [J]. 金属学报, 1999, 35: 541
65 Edalati K, Uehiro R, Fujiwara K, et al. Ultra-severe plastic deformation: Evolution of microstructure, phase transformation and hardness in immiscible magnesium-based systems [J]. Mater. Sci. Eng., 2017, A701: 158
66 Edalati K, Yamamoto A, Horita Z, et al. High-pressure torsion of pure magnesium: Evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain [J]. Scr. Mater., 2011, 64: 880
doi: 10.1016/j.scriptamat.2011.01.023
67 Edalati K, Emami H, Ikeda Y, et al. New nanostructured phases with reversible hydrogen storage capability in immiscible magnesium-zirconium system produced by high-pressure torsion [J]. Acta Mater., 2016, 108: 293
doi: 10.1016/j.actamat.2016.02.026
68 Edalati K, Emami H, Staykov A, et al. Formation of metastable phases in magnesium-titanium system by high-pressure torsion and their hydrogen storage performance [J]. Acta Mater., 2015, 99: 150
doi: 10.1016/j.actamat.2015.07.060
69 Fujiwara K, Uehiro R, Edalati K, et al. New Mg-V-Cr BCC alloys synthesized by high-pressure torsion and ball milling [J]. Mater. Trans., 2018, 59: 741
doi: 10.2320/matertrans.M2018001
70 Edalati K, Uehiro R, Ikeda Y, et al. Design and synthesis of a magnesium alloy for room temperature hydrogen storage [J]. Acta Mater., 2018, 149: 88
doi: 10.1016/j.actamat.2018.02.033
71 Chiu C, Huang S J, Chou T Y, et al. Improving hydrogen storage performance of AZ31 Mg alloy by equal channel angular pressing and additives [J]. J. Alloys Compd., 2018, 743: 437
doi: 10.1016/j.jallcom.2018.01.412
72 Jorge Jr A M, Prokofiev E, De Lima G F, et al. An investigation of hydrogen storage in a magnesium-based alloy processed by equal-channel angular pressing [J]. Int. J. Hydrogen Energy, 2013, 38: 8306
doi: 10.1016/j.ijhydene.2013.03.158
73 Jorge Jr A M, De Lima G F, Triques M R M, et al. Correlation between hydrogen storage properties and textures induced in magnesium through ECAP and cold rolling [J]. Int. J. Hydrogen Energy, 2014, 39: 3810
doi: 10.1016/j.ijhydene.2013.12.154
74 Wen J, De Rango P, Allain N, et al. Improving hydrogen storage performance of Mg-based alloy through microstructure optimization [J]. J. Power Sources, 2020, 480: 228823
doi: 10.1016/j.jpowsour.2020.228823
75 Zhang J G, Huang W C, Liu J W, et al. Microstructural evolution and hydrogen storage properties of Mg1 - x Nb x (x = 0.17-0.76) alloy films via co-sputtering [J]. Int. J. Hydrogen Energy, 2019, 44: 29100
doi: 10.1016/j.ijhydene.2019.07.101
76 Norberg N S, Arthur T S, Fredrick S J, et al. Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution [J]. J. Am. Chem. Soc., 2011, 133: 10679
doi: 10.1021/ja201791y pmid: 21671640
77 Liu Y N, Zou J X, Zeng X Q, et al. Study on hydrogen storage properties of Mg-X (X = Fe, Co, V) nano-composites co-precipitated from solution [J]. RSC Adv., 2015, 5: 7687
doi: 10.1039/C4RA12977F
78 Cui J, Liu J W, Wang H, et al. Mg-TM (TM: Ti, Nb, V, Co, Mo or Ni) core-shell like nanostructures: Synthesis, hydrogen storage performance and catalytic mechanism [J]. J. Mater. Chem., 2014, 2A: 9645
79 Cho E S, Ruminski A M, Aloni S, et al. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage [J]. Nat. Commun., 2016, 7: 10804
doi: 10.1038/ncomms10804 pmid: 26902901
80 Hu Y Q, Zhang H F, Wang A M, et al. Catalysis functions of amorphous TiMn1.5 during the hydriding process of magnesium [J]. Acta Metall. Sin., 2003, 39: 1094
80 胡业奇, 张海峰, 王爱民 等. TiMn1.5非晶在镁氢化过程中催化作用的研究 [J]. 金属学报, 2003, 39: 1094
81 Qi Y, Zhang Y H, Zhang W, et al. Hydrogen storage thermodynamics and kinetics of RE-Mg-Ni-based alloys prepared by mechanical milling [J]. Int. J. Hydrogen Energy, 2017, 42: 18473
doi: 10.1016/j.ijhydene.2017.04.180
82 Zhang Y H, Feng D C, Sun H, et al. Structure and electrochemical hydrogen storage characteristics of Ce-Mg-Ni-based alloys synthesized by mechanical milling [J]. J. Rare Earths, 2017, 35: 280
doi: 10.1016/S1002-0721(17)60911-6
83 Zhang Y H, Yuan Z M, Yang T, et al. An investigation on hydrogen storage thermodynamics and kinetics of Pr-Mg-Ni-based PrMg12-type alloys synthesized by mechanical milling [J]. J. Alloys Compd., 2016, 688: 585
doi: 10.1016/j.jallcom.2016.07.246
84 Li J D, Li B, Yu X Q, et al. Geometrical effect in Mg-based metastable nano alloys with BCC structure for hydrogen storage [J]. Int. J. Hydrogen Energy, 2019, 44: 29291
doi: 10.1016/j.ijhydene.2019.01.031
85 Kuji T, Nakayama S, Hanzawa N, et al. Synthesis of nano-structured b.c.c. Mg-Tm-V (Tm = Ni, Co, Cu) alloys and their hydrogen solubility [J]. J. Alloys Compd., 2003, 356-357: 456
doi: 10.1016/S0925-8388(03)00229-9
86 Kondo T, Sakurai Y. Hydrogen absorption-desorption properties of Mg-Ca-V BCC alloy prepared by mechanical alloying [J]. J. Alloys Compd., 2006, 417: 164
doi: 10.1016/j.jallcom.2005.05.054
87 Hitam C N C, Aziz M A A, Ruhaimi A H, et al. Magnesium-based alloys for solid-state hydrogen storage applications: A review [J]. Int. J. Hydrogen Energy, 2021, 46: 31067
doi: 10.1016/j.ijhydene.2021.03.153
88 Ouyang L Z, Yang X S, Zhu M, et al. Enhanced hydrogen storage kinetics and stability by synergistic effects of in situ formed CeH2.73 and Ni in CeH2.73-MgH2-Ni nanocomposites [J]. J. Phys. Chem., 2014, 118C: 7808
89 Li Q, Li Y, Liu B, et al. The cycling stability of the in situ formed Mg-based nanocomposite catalyzed by YH2 [J]. J. Mater. Chem., 2017, 5A: 17532
90 Wagemans R W P, Van Lenthe J H, De Jongh P E, et al. Hydrogen storage in magnesium clusters: Quantum chemical study [J]. J. Am. Chem. Soc., 2005, 127: 16675
pmid: 16305257
91 Zhang X, Liu Y F, Ren Z H, et al. Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides [J]. Energy Environ. Sci., 2021, 14: 2302
doi: 10.1039/D0EE03160G
92 Tan Z P, Chiu C, Heilweil E J, et al. Thermodynamics, kinetics and microstructural evolution during hydrogenation of iron-doped magnesium thin films [J]. Int. J. Hydrogen Energy, 2011, 36: 9702
doi: 10.1016/j.ijhydene.2011.04.196
93 Li L L, Peng B, Ji W Q, et al. Studies on the hydrogen storage of magnesium nanowires by density functional theory [J]. J. Phys. Chem., 2009, 113C: 3007
94 Shao H Y, Ma W G, Kohno M, et al. Hydrogen storage and thermal conductivity properties of Mg-based materials with different structures [J]. Int. J. Hydrogen Energy, 2014, 39: 9893
doi: 10.1016/j.ijhydene.2014.02.063
95 Zhang Q Y, Zou J X, Ren L, et al. Research development of core-shell nanostructured Mg-based hydrogen storage composite materials [J]. Mater. Sci. Technol., 2020, 28(3): 58
doi: 10.1179/1743284711Y.0000000043
95 张秋雨, 邹建新, 任 莉 等. 核壳结构纳米镁基复合储氢材料研究进展 [J]. 材料科学与工艺, 2020, 28(3): 58
96 Zhang J G, Zhu Y F, Zang X X, et al. Nickel-decorated graphene nanoplates for enhanced H2 sorption properties of magnesium hydride at moderate temperatures [J]. J. Mater. Chem., 2016, 4A: 2560
97 Lotoskyy M, Denys R, Yartys V A, et al. An outstanding effect of graphite in nano-MgH2-TiH2 on hydrogen storage performance [J]. J. Mater. Chem., 2018, 6A: 10740
98 Jeon K J, Moon H R, Ruminski A M, et al. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts [J]. Nat. Mater., 2011, 10: 286
doi: 10.1038/nmat2978
99 Iwakura C, Nohara S, Zhang S G, et al. Hydriding and dehydriding characteristics of an amorphous Mg2Ni-Ni composite [J]. J. Alloys Compd., 1999, 285: 246
doi: 10.1016/S0925-8388(98)00966-9
100 Isogai K, Shoji T, Kimura H, et al. Increase in thermal stability of Mg62Ni33Ca5 amorphous alloy by absorption of hydrogen [J]. Mater. Trans., JIM, 2000, 41: 1486
doi: 10.2320/matertrans1989.41.1486
101 Zhang Q A, Zhang L X, Wang Q Q. Crystallization behavior and hydrogen storage kinetics of amorphous Mg11Y2Ni2 alloy [J]. J. Alloys Compd., 2013, 551: 376
doi: 10.1016/j.jallcom.2012.11.046
102 Zhang Y H, Wang H T, Zhai T T, et al. Hydrogen storage characteristics of the nanocrystalline and amorphous Mg-Nd-Ni-Cu-based alloys prepared by melt spinning [J]. Int. J. Hydrogen Energy, 2014, 39: 3790
doi: 10.1016/j.ijhydene.2013.12.139
103 Han B, Yu S B, Wang H, et al. Nanosize effect on the hydrogen storage properties of Mg-based amorphous alloy [J]. Scr. Mater., 2022, 216: 114736
doi: 10.1016/j.scriptamat.2022.114736
104 Xu C, Lin H J, Edalati K, et al. Superior hydrogenation properties in a Mg65Ce10Ni20Cu5 nanoglass processed by melt-spinning followed by high-pressure torsion [J]. Scr. Mater., 2018, 152: 137
doi: 10.1016/j.scriptamat.2018.04.036
105 Edalati K, Shao H Y, Emami H, et al. Activation of titanium-vanadium alloy for hydrogen storage by introduction of nanograins and edge dislocations using high-pressure torsion [J]. Int. J. Hydrogen Energy, 2016, 41: 8917
doi: 10.1016/j.ijhydene.2016.03.146
106 Ham B, Junkaew A, Arróyave R, et al. Size and stress dependent hydrogen desorption in metastable Mg hydride films [J]. Int. J. Hydrogen Energy, 2014, 39: 2597
doi: 10.1016/j.ijhydene.2013.12.017
107 Mooij L P A, Baldi A, Boelsma C, et al. Interface energy controlled thermodynamics of nanoscale metal hydrides [J]. Adv. Energy Mater., 2011, 1: 754
doi: 10.1002/aenm.201100316
108 Ouyang L Z, Ye S Y, Dong H W, et al. Effect of interfacial free energy on hydriding reaction of Mg-Ni thin films [J]. Appl. Phys. Lett., 2007, 90: 021917
109 Fujii H, Higuchi K, Yamamoto K, et al. Remarkable hydrogen storage, structural and optical properties in multi-layered Pd/Mg thin films [J]. Mater. Trans., 2002, 43: 2721
doi: 10.2320/matertrans.43.2721
110 Ouyang L Z, Tang J J, Zhao Y J, et al. Express penetration of hydrogen on Mg (10 1 ¯ 3) along the close-packed-planes [J]. Sci. Rep., 2015, 5: 10776
doi: 10.1038/srep10776
111 El-Eskandarany M S, Banyan M, Al-Ajmi F. Cold-rolled magnesium hydride strips decorated with cold-sprayed Ni powders for solid-state-hydrogen storage [J]. Int. J. Hydrogen Energy, 2019, 44: 16852
doi: 10.1016/j.ijhydene.2019.04.204
112 Karst J, Sterl F, Linnenbank H, et al. Watching in situ the hydrogen diffusion dynamics in magnesium on the nanoscale [J]. Sci. Adv., 2020, 6: eaaz0566
doi: 10.1126/sciadv.aaz0566
113 Krystian M, Zehetbauer M J, Kropik H, et al. Hydrogen storage properties of bulk nanostructured ZK60 Mg alloy processed by equal channel angular pressing [J]. J. Alloys Compd., 2011, 509: S449
doi: 10.1016/j.jallcom.2011.01.029
114 Faisal M, Gupta A, Shervani S, et al. Enhanced hydrogen storage in accumulative roll bonded Mg-based hybrid [J]. Int. J. Hydrogen Energy, 2015, 40: 11498
doi: 10.1016/j.ijhydene.2015.03.095
115 Faisal M, Balani K, Subramaniam A. Cross-sectional TEM investigation of Mg-LaNi5-Soot hybrids for hydrogen storage [J]. Int. J. Hydrogen Energy, 2021, 46: 5507
doi: 10.1016/j.ijhydene.2020.11.134
116 Patelli N, Migliori A, Morandi V, et al. Interfaces within biphasic nanoparticles give a boost to magnesium-based hydrogen storage [J]. Nano Energy, 2020, 72: 104654
doi: 10.1016/j.nanoen.2020.104654
117 Zhang Y, Zheng J G, Lu Z Y, et al. Boosting the hydrogen storage performance of magnesium hydride with metal organic framework-derived cobalt@nickel oxide bimetallic catalyst [J]. Chin. J. Chem. Eng., 2022, 52: 161
doi: 10.1016/j.cjche.2022.06.026
118 Aymonier C, Denis A, Roig Y, et al. Supported metal NPs on magnesium using SCFs for hydrogen storage: Interface and interphase characterization [J]. J. Supercrit. Fluids, 2010, 53: 102
doi: 10.1016/j.supflu.2010.02.012
[1] 汪洋; 张琰; 王新华; 陈长聘 . Ti-Cr基合金的储氢性能及晶体结构[J]. 金属学报, 2006, 42(6): 641-646 .
[2] 吕光烈; 舒康颖; 胡秀荣; 顾建明; 宋雪雁; 雷永泉; 王启东 . 快凝合金Zr(Ni0.55Mn0.3V0.1Cr0.05)2.1的相结构与储氢性能[J]. 金属学报, 1999, 35(5): 453-457 .
[3] 敖鸣;王启东. 经四氢呋喃改性后Mg的储氢性能[J]. 金属学报, 1990, 26(3): 40-43.
[4] 杨民杰;陈炳兆. 用TiFe_(0.86)Mn_(0.1)合金分离氢中Kr,Xe的研究[J]. 金属学报, 1988, 24(2): 194-198.