|
|
镁基材料中储氢相及其界面与储氢性能的调控 |
李谦1,2,3, 孙璇3, 罗群3, 刘斌3, 吴成章3, 潘复生1,2( ) |
1 重庆大学 国家镁合金材料工程技术研究中心 重庆 400044 2 重庆大学 材料科学与工程学院 重庆 400044 3 上海大学 材料科学与工程学院 省部共建高品质特殊钢冶金与制备国家重点实验室 上海 200444 |
|
Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance |
LI Qian1,2,3, SUN Xuan3, LUO Qun3, LIU Bin3, WU Chengzhang3, PAN Fusheng1,2( ) |
1 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China 2 School of Materials Science and Engineering, Chongqing University, Chongqing 400044, China 3 State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China |
引用本文:
李谦, 孙璇, 罗群, 刘斌, 吴成章, 潘复生. 镁基材料中储氢相及其界面与储氢性能的调控[J]. 金属学报, 2023, 59(3): 349-370.
Qian LI,
Xuan SUN,
Qun LUO,
Bin LIU,
Chengzhang WU,
Fusheng PAN.
Regulation of Hydrogen Storage Phase and Its Interface in Magnesium-Based Materials for Hydrogen Storage Performance[J]. Acta Metall Sin, 2023, 59(3): 349-370.
1 |
Zhu M, Ouyang L Z. Kinetics tuning and electrochemical performance of Mg-based hydrogen storage alloys [J]. Acta Metall. Sin., 2021, 57: 1416
doi: 10.11900/0412.1961.2021.00336
|
1 |
朱 敏, 欧阳柳章. 镁基储氢合金动力学调控及电化学性能 [J]. 金属学报, 2021, 57: 1416
|
2 |
Schlapbach L, Züttel A. Hydrogen-storage materials for mobile applications [J]. Nature, 2001, 414: 353
doi: 10.1038/35104634
|
3 |
Cohen R L, Wernick J H. Hydrogen storage materials: Properties and possibilities [J]. Science, 1981, 214: 1081
pmid: 17755872
|
4 |
An X H, Pan Y B, Luo Q, et al. Application of a new kinetic model for the hydriding kinetics of LaNi5 - x Al x (0 ≤ x≤ 1.0) alloys [J]. J. Alloys Compd., 2010, 506: 63
doi: 10.1016/j.jallcom.2010.07.016
|
5 |
Ding W J, Zeng X Q. Research and applications of magnesium in China [J]. Acta Metall. Sin., 2010, 46: 1450
doi: 10.3724/SP.J.1037.2010.01450
|
5 |
丁文江, 曾小勤. 中国Mg材料研发与应用 [J]. 金属学报, 2010, 46: 1450
doi: 10.3724/SP.J.1037.2010.00386
|
6 |
Fang W B, Zhang W C, Yu Z X, et al. Recent development of Mg-based hydrogen storage material [J]. Chin. J. Nonferrous Met., 2002, 12: 853
|
6 |
房文斌, 张文丛, 于振兴 等. 镁基储氢材料的研究进展 [J]. 中国有色金属学报, 2002, 12: 853
|
7 |
Feng Y, Chen C, Peng C Q, et al. Research progress on magnesium matrix composites [J]. Chin. J. Nonferrous Met., 2017, 27: 2385
|
7 |
冯 艳, 陈 超, 彭超群 等. 镁基复合材料的研究进展 [J]. 中国有色金属学报, 2017, 27: 2385
|
8 |
Li Q, Lu Y F, Luo Q, et al. Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials [J]. J. Magnes. Alloy., 2021, 9: 1922
doi: 10.1016/j.jma.2021.10.002
|
9 |
Zhang Q Y, Du S C, Ma Z W, et al. Recent advances in Mg-based hydrogen storage materials [J]. Chin. Sci. Bull., 2022, 67: 2158
doi: 10.1360/TB-2021-0430
|
9 |
张秋雨, 杜四川, 马哲文 等. 镁基储氢材料的研究进展 [J]. 科学通报, 2022, 67: 2158
|
10 |
Zhou G Z, Li Q. Thermodynamics and kinetics of magnesium-based hydrogen storage material [J]. Chin. J. Nat., 2011, 33: 6
|
10 |
周国治, 李 谦. 镁基储氢材料的热力学和动力学 [J]. 自然杂志, 2011, 33: 6
|
11 |
Liu J, Li Q, Zhou G Z, et al. Model investigation of hydrogen absorption and desorption kinetics of nanocrystalline magnesium [J]. Rare Met. Mater. Eng., 2007, 36: 1802
|
11 |
刘 静, 李 谦, 周国治 等. 纳米晶镁粉的吸放氢动力学模型分析 [J]. 稀有金属材料与工程, 2007, 36: 1802
|
12 |
Wu G X, Zhang J Y, Wu Y Q, et al. First-principle calculations of the adsorption, dissociation and diffusion of hydrogen on the Mg (0001) surface [J]. Acta Phys. Chim. Sin., 2008, 24: 55
doi: 10.1016/S1872-1508(08)60006-6
|
13 |
Zeng X Q, Ding W J, Ying Y J, et al. Research progress of Mg-based energy materials [J]. Mater. China, 2011, 30(2): 35
|
13 |
曾小勤, 丁文江, 应燕君 等. 镁基能源材料研究进展 [J]. 中国材料进展, 2011, 30(2): 35
|
14 |
Wu X J, Xue H Q, Peng Y, et al. Research progress of Mg and Mg-based alloy hydrogen storage materials [J]. Rare Met. Mater. Eng., 2022, 51: 727
|
14 |
武晓娟, 薛华庆, 彭 涌 等. 镁及镁合金储氢材料的研究进展 [J]. 稀有金属材料与工程, 2022, 51: 727
|
15 |
El-Eskandarany M S, Shaban E, Aldakheel F, et al. Synthetic nanocomposite MgH2/5 wt.% TiMn2 powders for solid-hydrogen storage tank integrated with PEM fuel cell [J]. Sci. Rep., 2017, 7: 13296
doi: 10.1038/s41598-017-13483-0
pmid: 29038594
|
16 |
Lin H J, Lu Y S, Zhang L T, et al. Recent advances in metastable alloys for hydrogen storage: A review [J]. Rare Met., 2022, 41: 1797
doi: 10.1007/s12598-021-01917-8
|
17 |
Ding X, Chen R R, Zhang J X, et al. Recent progress on enhancing the hydrogen storage properties of Mg-based materials via fabricating nanostructures: A critical review [J]. J. Alloys Compd., 2022, 897: 163137
doi: 10.1016/j.jallcom.2021.163137
|
18 |
Liu J, Li Q, Zhou G Z. La0.67Mg0.33Ni3 alloy prepared by magnetic field assisted sintering synthesis [J]. Rare Met. Mater. Eng., 2013, 42: 392
|
18 |
刘 静, 李 谦, 周国治. 磁场辅助烧结法制备La0 . 67Mg 0.33Ni3储氢合金 [J]. 稀有金属材料与工程, 2013, 42: 392
|
19 |
Shang Y Y, Pistidda C, Gizer G, et al. Mg-based materials for hydrogen storage [J]. J. Magnes. Alloy., 2021, 9: 1837
doi: 10.1016/j.jma.2021.06.007
|
20 |
House S D, Vajo J J, Ren C, et al. Effect of ball-milling duration and dehydrogenation on the morphology, microstructure and catalyst dispersion in Ni-catalyzed MgH2 hydrogen storage materials [J]. Acta Mater., 2015, 86: 55
doi: 10.1016/j.actamat.2014.11.047
|
21 |
Li W Y, Li C S, Ma H, et al. Magnesium nanowires: Enhanced kinetics for hydrogen absorption and desorption [J]. J. Am. Chem. Soc., 2007, 129: 6710
pmid: 17488082
|
22 |
Shao H Y, Xin G B, Zheng J, et al. Nanotechnology in Mg-based materials for hydrogen storage [J]. Nano Energy, 2012, 1: 590
doi: 10.1016/j.nanoen.2012.05.005
|
23 |
Huang Y Q, Xia G L, Chen J, et al. One-step uniform growth of magnesium hydride nanoparticles on graphene [J]. Prog. Natl. Sci., 2017, 27: 81
doi: 10.1016/j.pnsc.2016.12.015
|
24 |
Li Q, Zhou G Z. Relationships between key phases and their interfaces with properties in rare earth-magnesium alloys [J]. Chin. J. Nonferrous Met., 2019, 29: 1934
|
24 |
李 谦, 周国治. 稀土镁合金中关键相及其界面与性能的相关性 [J]. 中国有色金属学报, 2019, 29: 1934
|
25 |
Ouyang L Z, Liu F, Wang H, et al. Magnesium-based hydrogen storage compounds: A review [J]. J. Alloys Compd., 2020, 832: 154865
doi: 10.1016/j.jallcom.2020.154865
|
26 |
Ouyang L Z, Qin F Z, Zhu M. The hydrogen storage behavior of Mg3La and Mg3LaNi0.1 [J]. Scr. Mater., 2006, 55: 1075
doi: 10.1016/j.scriptamat.2006.08.052
|
27 |
Sun D L, Gingl F, Nakamura Y, et al. In situ X-ray diffraction study of hydrogen-induced phase decomposition in LaMg12 and La2Mg17 [J]. J. Alloys Compd., 2002, 333: 103
doi: 10.1016/S0925-8388(01)01712-1
|
28 |
Zhang X, Kevorkov D, Pekguleryuz M O. Study on the binary intermetallic compounds in the Mg-Ce system [J]. Intermetallics, 2009, 17: 496
doi: 10.1016/j.intermet.2009.01.002
|
29 |
Zhai C, Luo Q, Cai Q, et al. Thermodynamically analyzing the formation of Mg12Nd and Mg41Nd5 in Mg-Nd system under a static magnetic field [J]. J. Alloys Compd., 2019, 773: 202
doi: 10.1016/j.jallcom.2018.09.203
|
30 |
Zhang J, Mao C, Long C G, et al. Phase stability, elastic properties and electronic structures of Mg-Y intermetallics from first-principles calculations [J]. J. Magnes. Alloy., 2015, 3: 127
doi: 10.1016/j.jma.2015.03.003
|
31 |
Ishikawa K, Kawasaki T, Yamada Y. Hydrogenation behavior of Mg85Zn6Y9 crystalline alloy with long period stacking ordered structure [J]. Int. J. Hydrogen Energy, 2015, 40: 13014
doi: 10.1016/j.ijhydene.2015.07.103
|
32 |
Zhang Q A, Liu D D, Wang Q Q, et al. Superior hydrogen storage kinetics of Mg12YNi alloy with a long-period stacking ordered phase [J]. Scr. Mater., 2011, 65: 233
doi: 10.1016/j.scriptamat.2011.04.014
|
33 |
Chen R R, Ding X, Chen X Y, et al. In-situ hydrogen-induced evolution and de-/hydrogenation behaviors of the Mg93Cu7 - x Y x alloys with equalized LPSO and eutectic structure [J]. Int. J. Hydrogen Energy, 2019, 44: 21999
doi: 10.1016/j.ijhydene.2019.06.089
|
34 |
Nakamura J, Iwase K, Hayakawa H, et al. Structural study of La4MgNi19 hydride by in situ X-ray and neutron powder diffraction [J]. J. Phys. Chem., 2009, 113C: 5853
|
35 |
Zhang Q A, Fang M H, Si T Z, et al. Phase stability, structural transition, and hydrogen absorption-desorption features of the polymorphic La4MgNi19 compound [J]. J. Phys. Chem., 2010, 114C: 11686
|
36 |
Li Q, Luo Q, Gu Q F. Insights into the composition exploration of novel hydrogen storage alloys: Evaluation of the Mg-Ni-Nd-H phase diagram [J]. J. Mater. Chem., 2017, 5A: 3848
|
37 |
Luo Q, Gu Q F, Liu B, et al. Achieving superior cycling stability by in situ forming NdH2-Mg-Mg2Ni nanocomposites [J]. J. Mater. Chem., 2018, 6A: 23308
|
38 |
Liu J, Zhang X, Li Q, et al. Investigation on kinetics mechanism of hydrogen absorption in the La2Mg17-based composites [J]. Int. J. Hydrogen Energy, 2009, 34: 1951
doi: 10.1016/j.ijhydene.2008.12.040
|
39 |
Pei L C, Han S M, Wang J S, et al. Hydrogen storage properties and phase structures of RMg2Ni (R = La, Ce, Pr, Nd) alloys [J]. Mater. Sci. Eng., 2012, B177: 1589
|
40 |
Son V B, Volodin A A, Denys R V, et al. Hydrogen sorption and electrochemical properties of intermetallic compounds La2MgNi9 and La1.9Mg1.1Ni9 [J]. Russ. Chem. Bull., 2016, 65: 1971
doi: 10.1007/s11172-016-1538-1
|
41 |
Li H X, Wan C B, Li X C, et al. Structural, hydrogen storage, and electrochemical performance of LaMgNi4 alloy and theoretical investigation of its hydrides [J]. Int. J. Hydrogen Energy, 2022, 47: 1723
doi: 10.1016/j.ijhydene.2021.10.135
|
42 |
Liu Y F, Pan H G, Gao M X, et al. Investigation on the structure and electrochemical properties of the rare-earth Mg-based hydrogen storage electrode alloys [J]. Acta Metall. Sin., 2003, 39: 666
|
42 |
刘永锋, 潘洪革, 高明霞 等. 稀土镁基贮氢电极合金的结构与电化学性能研究 [J]. 金属学报, 2003, 39: 666
|
43 |
Luo Q, Guo Y L, Liu B, et al. Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review [J]. J. Mater. Sci. Technol., 2020, 44: 171
doi: 10.1016/j.jmst.2020.01.022
|
44 |
Zhang J X, Ding X, Chen R R, et al. Design of LPSO-introduced Mg96Y2Zn2 alloy and its improved hydrogen storage properties catalyzed by in-situ formed YH2 [J]. J. Alloys Compd., 2022, 910: 164832
doi: 10.1016/j.jallcom.2022.164832
|
45 |
Sun Y, Wang D B, Wang J M, et al. Hydrogen storage properties of ultrahigh pressure Mg12NiY alloys with a superfine LPSO structure [J]. Int. J. Hydrogen Energy, 2019, 44: 23179
doi: 10.1016/j.ijhydene.2019.06.191
|
46 |
Zhang J X, Ding X, Chen R R, et al. Comparative study of solid-solution treatment and hot-extrusion on hydrogen storage performance for Mg96Y2Zn2 alloy: The nonnegligible role of elements distribution [J]. J. Power Sources, 2022, 548: 232037
doi: 10.1016/j.jpowsour.2022.232037
|
47 |
He J H, Zhang J, Zhou X J, et al. Hydrogen storage properties of Mg98.5Gd1Zn0.5 and Mg98.5Gd0.5Y0.5Zn0.5 alloys containing LPSO phases [J]. Int. J. Hydrogen Energy, 2021, 46: 32949
doi: 10.1016/j.ijhydene.2021.07.140
|
48 |
Li Q. Design of Mg-based multicomponent hydrogen storage alloys based on thermodynamic and kinetic calculations and physical chemistry of hydrogenation reaction [J]. Mater. China, 2015, 34: 698
|
48 |
李 谦. 基于热力学和动力学计算的镁基多元储氢合金设计及其氢化反应的物理化学 [J]. 中国材料进展, 2015, 34: 698
|
49 |
Zhao X J, Li Q, Chou K, et al. Effect of Co substitution for Ni and magnetic-heat treatment on the structures and electrochemical properties of La-Mg-Ni-type hydrogen storage alloys [J]. J. Alloys Compd., 2009, 473: 428
doi: 10.1016/j.jallcom.2008.05.108
|
50 |
Conrad H, Ertl G, Latta E E. Adsorption of hydrogen on palladium single crystal surfaces [J]. Surf. Sci., 1974, 41: 435
doi: 10.1016/0039-6028(74)90060-0
|
51 |
Han Z Y, Chen H P, Zhou S X. Dissociation and diffusion of hydrogen on defect-free and vacancy defective Mg (0001) surfaces: A density functional theory study [J]. Appl. Surf. Sci., 2017, 394: 371
doi: 10.1016/j.apsusc.2016.10.101
|
52 |
Botta W J, Jorge Jr A M, Veron M, et al. H-sorption properties and structural evolution of Mg processed by severe plastic deformation [J]. J. Alloys Compd., 2013, 580(suppl.1) : S187
|
53 |
Song W J, Dong H P, Zhang G, et al. Enhanced hydrogen absorption kinetics by introducing fine eutectic and long-period stacking ordered structure in ternary eutectic Mg-Ni-Y alloy [J]. J. Alloys Compd., 2020, 820: 153187
doi: 10.1016/j.jallcom.2019.153187
|
54 |
Liang H, Li J, Shen X H, et al. The study of amorphous La@Mg catalyst for high efficiency hydrogen storage [J]. Int. J. Hydrogen Energy, 2022, 47: 18404
doi: 10.1016/j.ijhydene.2022.04.032
|
55 |
Hongo T, Edalati K, Arita M, et al. Significance of grain boundaries and stacking faults on hydrogen storage properties of Mg2Ni intermetallics processed by high-pressure torsion [J]. Acta Mater., 2015, 92: 46
doi: 10.1016/j.actamat.2015.03.036
|
56 |
Ding X, Chen R R, Chen X Y, et al. A novel method towards improving the hydrogen storage properties of hypoeutectic Mg-Ni alloy via ultrasonic treatment [J]. J. Magnes. Alloy., 2021, doi: 10.1016/j.jma.2021.06.003
|
57 |
Fu H, Wu W S, Dou Y, et al. Hydrogen diffusion kinetics and structural integrity of superhigh pressure Mg-5 wt% Ni alloys with dendrite interface [J]. J. Power Sources, 2016, 320: 212
doi: 10.1016/j.jpowsour.2016.04.045
|
58 |
Luo Q, Li J D, Li B, et al. Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism [J]. J. Magnes. Alloy., 2019, 7: 58
doi: 10.1016/j.jma.2018.12.001
|
59 |
Lin H J, Ouyang L Z, Wang H, et al. Hydrogen storage properties of Mg-Ce-Ni nanocomposite induced from amorphous precursor with the highest Mg content [J]. Int. J. Hydrogen Energy, 2012, 37: 14329
doi: 10.1016/j.ijhydene.2012.07.073
|
60 |
Knotek V, Ekrt O, Michalcová A, et al. Electrochemical hydriding of nanocrystalline Mg-Ni-X (X = Co, Mn, Nd) alloys prepared by mechanical alloying and spark plasma sintering [J]. J. Alloys Compd., 2017, 726: 787
doi: 10.1016/j.jallcom.2017.08.059
|
61 |
Song X P, Zhang P L, Pei P, et al. The role of spark plasma sintering on the improvement of hydrogen storage properties of Mg-based composites [J]. Int. J. Hydrogen Energy, 2010, 35: 8080
doi: 10.1016/j.ijhydene.2010.01.048
|
62 |
Liu D M, Si T Z, Wang C C, et al. Phase component, microstructure and hydrogen storage properties of the laser sintered Mg-20wt.% LaNi5 composite [J]. Scr. Mater., 2007, 57: 389
doi: 10.1016/j.scriptamat.2007.05.011
|
63 |
Li Q, Wu Z, Lu X G, et al. Hydrogen sorption-desorption properties of Mg-Ni-Ti0.32Cr0.35V0.07Fe0.26 composite by mechanochemical syntyhsis [J]. Rare Met. Mater. Eng., 2007, 36: 1672
|
63 |
李 谦, 吴 铸, 鲁雄刚 等. 机械化学法制备Mg-Ni-Ti0.32Cr0.35V0.07-Fe0.26复合材料的储放氢性能 [J]. 稀有金属材料与工程, 2007, 36: 1672
|
64 |
Zhu W H, Zhu M, Luo K C, et al. Mechanical alloying induced solid state reaction and formation of nano-phase composite hydrogen storage alloys in MmNi5 - x (Co, Al, Mn) x /Mg system [J]. Acta Metall. Sin., 1999, 35: 541
|
64 |
朱文辉, 朱 敏, 罗堪昌 等. 高能球磨在MmNi5 - x (Co, Al, Mn) x /Mg体系中诱发的固态反应及纳米相复合储氢合金的形成 [J]. 金属学报, 1999, 35: 541
|
65 |
Edalati K, Uehiro R, Fujiwara K, et al. Ultra-severe plastic deformation: Evolution of microstructure, phase transformation and hardness in immiscible magnesium-based systems [J]. Mater. Sci. Eng., 2017, A701: 158
|
66 |
Edalati K, Yamamoto A, Horita Z, et al. High-pressure torsion of pure magnesium: Evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain [J]. Scr. Mater., 2011, 64: 880
doi: 10.1016/j.scriptamat.2011.01.023
|
67 |
Edalati K, Emami H, Ikeda Y, et al. New nanostructured phases with reversible hydrogen storage capability in immiscible magnesium-zirconium system produced by high-pressure torsion [J]. Acta Mater., 2016, 108: 293
doi: 10.1016/j.actamat.2016.02.026
|
68 |
Edalati K, Emami H, Staykov A, et al. Formation of metastable phases in magnesium-titanium system by high-pressure torsion and their hydrogen storage performance [J]. Acta Mater., 2015, 99: 150
doi: 10.1016/j.actamat.2015.07.060
|
69 |
Fujiwara K, Uehiro R, Edalati K, et al. New Mg-V-Cr BCC alloys synthesized by high-pressure torsion and ball milling [J]. Mater. Trans., 2018, 59: 741
doi: 10.2320/matertrans.M2018001
|
70 |
Edalati K, Uehiro R, Ikeda Y, et al. Design and synthesis of a magnesium alloy for room temperature hydrogen storage [J]. Acta Mater., 2018, 149: 88
doi: 10.1016/j.actamat.2018.02.033
|
71 |
Chiu C, Huang S J, Chou T Y, et al. Improving hydrogen storage performance of AZ31 Mg alloy by equal channel angular pressing and additives [J]. J. Alloys Compd., 2018, 743: 437
doi: 10.1016/j.jallcom.2018.01.412
|
72 |
Jorge Jr A M, Prokofiev E, De Lima G F, et al. An investigation of hydrogen storage in a magnesium-based alloy processed by equal-channel angular pressing [J]. Int. J. Hydrogen Energy, 2013, 38: 8306
doi: 10.1016/j.ijhydene.2013.03.158
|
73 |
Jorge Jr A M, De Lima G F, Triques M R M, et al. Correlation between hydrogen storage properties and textures induced in magnesium through ECAP and cold rolling [J]. Int. J. Hydrogen Energy, 2014, 39: 3810
doi: 10.1016/j.ijhydene.2013.12.154
|
74 |
Wen J, De Rango P, Allain N, et al. Improving hydrogen storage performance of Mg-based alloy through microstructure optimization [J]. J. Power Sources, 2020, 480: 228823
doi: 10.1016/j.jpowsour.2020.228823
|
75 |
Zhang J G, Huang W C, Liu J W, et al. Microstructural evolution and hydrogen storage properties of Mg1 - x Nb x (x = 0.17-0.76) alloy films via co-sputtering [J]. Int. J. Hydrogen Energy, 2019, 44: 29100
doi: 10.1016/j.ijhydene.2019.07.101
|
76 |
Norberg N S, Arthur T S, Fredrick S J, et al. Size-dependent hydrogen storage properties of Mg nanocrystals prepared from solution [J]. J. Am. Chem. Soc., 2011, 133: 10679
doi: 10.1021/ja201791y
pmid: 21671640
|
77 |
Liu Y N, Zou J X, Zeng X Q, et al. Study on hydrogen storage properties of Mg-X (X = Fe, Co, V) nano-composites co-precipitated from solution [J]. RSC Adv., 2015, 5: 7687
doi: 10.1039/C4RA12977F
|
78 |
Cui J, Liu J W, Wang H, et al. Mg-TM (TM: Ti, Nb, V, Co, Mo or Ni) core-shell like nanostructures: Synthesis, hydrogen storage performance and catalytic mechanism [J]. J. Mater. Chem., 2014, 2A: 9645
|
79 |
Cho E S, Ruminski A M, Aloni S, et al. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage [J]. Nat. Commun., 2016, 7: 10804
doi: 10.1038/ncomms10804
pmid: 26902901
|
80 |
Hu Y Q, Zhang H F, Wang A M, et al. Catalysis functions of amorphous TiMn1.5 during the hydriding process of magnesium [J]. Acta Metall. Sin., 2003, 39: 1094
|
80 |
胡业奇, 张海峰, 王爱民 等. TiMn1.5非晶在镁氢化过程中催化作用的研究 [J]. 金属学报, 2003, 39: 1094
|
81 |
Qi Y, Zhang Y H, Zhang W, et al. Hydrogen storage thermodynamics and kinetics of RE-Mg-Ni-based alloys prepared by mechanical milling [J]. Int. J. Hydrogen Energy, 2017, 42: 18473
doi: 10.1016/j.ijhydene.2017.04.180
|
82 |
Zhang Y H, Feng D C, Sun H, et al. Structure and electrochemical hydrogen storage characteristics of Ce-Mg-Ni-based alloys synthesized by mechanical milling [J]. J. Rare Earths, 2017, 35: 280
doi: 10.1016/S1002-0721(17)60911-6
|
83 |
Zhang Y H, Yuan Z M, Yang T, et al. An investigation on hydrogen storage thermodynamics and kinetics of Pr-Mg-Ni-based PrMg12-type alloys synthesized by mechanical milling [J]. J. Alloys Compd., 2016, 688: 585
doi: 10.1016/j.jallcom.2016.07.246
|
84 |
Li J D, Li B, Yu X Q, et al. Geometrical effect in Mg-based metastable nano alloys with BCC structure for hydrogen storage [J]. Int. J. Hydrogen Energy, 2019, 44: 29291
doi: 10.1016/j.ijhydene.2019.01.031
|
85 |
Kuji T, Nakayama S, Hanzawa N, et al. Synthesis of nano-structured b.c.c. Mg-Tm-V (Tm = Ni, Co, Cu) alloys and their hydrogen solubility [J]. J. Alloys Compd., 2003, 356-357: 456
doi: 10.1016/S0925-8388(03)00229-9
|
86 |
Kondo T, Sakurai Y. Hydrogen absorption-desorption properties of Mg-Ca-V BCC alloy prepared by mechanical alloying [J]. J. Alloys Compd., 2006, 417: 164
doi: 10.1016/j.jallcom.2005.05.054
|
87 |
Hitam C N C, Aziz M A A, Ruhaimi A H, et al. Magnesium-based alloys for solid-state hydrogen storage applications: A review [J]. Int. J. Hydrogen Energy, 2021, 46: 31067
doi: 10.1016/j.ijhydene.2021.03.153
|
88 |
Ouyang L Z, Yang X S, Zhu M, et al. Enhanced hydrogen storage kinetics and stability by synergistic effects of in situ formed CeH2.73 and Ni in CeH2.73-MgH2-Ni nanocomposites [J]. J. Phys. Chem., 2014, 118C: 7808
|
89 |
Li Q, Li Y, Liu B, et al. The cycling stability of the in situ formed Mg-based nanocomposite catalyzed by YH2 [J]. J. Mater. Chem., 2017, 5A: 17532
|
90 |
Wagemans R W P, Van Lenthe J H, De Jongh P E, et al. Hydrogen storage in magnesium clusters: Quantum chemical study [J]. J. Am. Chem. Soc., 2005, 127: 16675
pmid: 16305257
|
91 |
Zhang X, Liu Y F, Ren Z H, et al. Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultrafine magnesium hydrides [J]. Energy Environ. Sci., 2021, 14: 2302
doi: 10.1039/D0EE03160G
|
92 |
Tan Z P, Chiu C, Heilweil E J, et al. Thermodynamics, kinetics and microstructural evolution during hydrogenation of iron-doped magnesium thin films [J]. Int. J. Hydrogen Energy, 2011, 36: 9702
doi: 10.1016/j.ijhydene.2011.04.196
|
93 |
Li L L, Peng B, Ji W Q, et al. Studies on the hydrogen storage of magnesium nanowires by density functional theory [J]. J. Phys. Chem., 2009, 113C: 3007
|
94 |
Shao H Y, Ma W G, Kohno M, et al. Hydrogen storage and thermal conductivity properties of Mg-based materials with different structures [J]. Int. J. Hydrogen Energy, 2014, 39: 9893
doi: 10.1016/j.ijhydene.2014.02.063
|
95 |
Zhang Q Y, Zou J X, Ren L, et al. Research development of core-shell nanostructured Mg-based hydrogen storage composite materials [J]. Mater. Sci. Technol., 2020, 28(3): 58
doi: 10.1179/1743284711Y.0000000043
|
95 |
张秋雨, 邹建新, 任 莉 等. 核壳结构纳米镁基复合储氢材料研究进展 [J]. 材料科学与工艺, 2020, 28(3): 58
|
96 |
Zhang J G, Zhu Y F, Zang X X, et al. Nickel-decorated graphene nanoplates for enhanced H2 sorption properties of magnesium hydride at moderate temperatures [J]. J. Mater. Chem., 2016, 4A: 2560
|
97 |
Lotoskyy M, Denys R, Yartys V A, et al. An outstanding effect of graphite in nano-MgH2-TiH2 on hydrogen storage performance [J]. J. Mater. Chem., 2018, 6A: 10740
|
98 |
Jeon K J, Moon H R, Ruminski A M, et al. Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts [J]. Nat. Mater., 2011, 10: 286
doi: 10.1038/nmat2978
|
99 |
Iwakura C, Nohara S, Zhang S G, et al. Hydriding and dehydriding characteristics of an amorphous Mg2Ni-Ni composite [J]. J. Alloys Compd., 1999, 285: 246
doi: 10.1016/S0925-8388(98)00966-9
|
100 |
Isogai K, Shoji T, Kimura H, et al. Increase in thermal stability of Mg62Ni33Ca5 amorphous alloy by absorption of hydrogen [J]. Mater. Trans., JIM, 2000, 41: 1486
doi: 10.2320/matertrans1989.41.1486
|
101 |
Zhang Q A, Zhang L X, Wang Q Q. Crystallization behavior and hydrogen storage kinetics of amorphous Mg11Y2Ni2 alloy [J]. J. Alloys Compd., 2013, 551: 376
doi: 10.1016/j.jallcom.2012.11.046
|
102 |
Zhang Y H, Wang H T, Zhai T T, et al. Hydrogen storage characteristics of the nanocrystalline and amorphous Mg-Nd-Ni-Cu-based alloys prepared by melt spinning [J]. Int. J. Hydrogen Energy, 2014, 39: 3790
doi: 10.1016/j.ijhydene.2013.12.139
|
103 |
Han B, Yu S B, Wang H, et al. Nanosize effect on the hydrogen storage properties of Mg-based amorphous alloy [J]. Scr. Mater., 2022, 216: 114736
doi: 10.1016/j.scriptamat.2022.114736
|
104 |
Xu C, Lin H J, Edalati K, et al. Superior hydrogenation properties in a Mg65Ce10Ni20Cu5 nanoglass processed by melt-spinning followed by high-pressure torsion [J]. Scr. Mater., 2018, 152: 137
doi: 10.1016/j.scriptamat.2018.04.036
|
105 |
Edalati K, Shao H Y, Emami H, et al. Activation of titanium-vanadium alloy for hydrogen storage by introduction of nanograins and edge dislocations using high-pressure torsion [J]. Int. J. Hydrogen Energy, 2016, 41: 8917
doi: 10.1016/j.ijhydene.2016.03.146
|
106 |
Ham B, Junkaew A, Arróyave R, et al. Size and stress dependent hydrogen desorption in metastable Mg hydride films [J]. Int. J. Hydrogen Energy, 2014, 39: 2597
doi: 10.1016/j.ijhydene.2013.12.017
|
107 |
Mooij L P A, Baldi A, Boelsma C, et al. Interface energy controlled thermodynamics of nanoscale metal hydrides [J]. Adv. Energy Mater., 2011, 1: 754
doi: 10.1002/aenm.201100316
|
108 |
Ouyang L Z, Ye S Y, Dong H W, et al. Effect of interfacial free energy on hydriding reaction of Mg-Ni thin films [J]. Appl. Phys. Lett., 2007, 90: 021917
|
109 |
Fujii H, Higuchi K, Yamamoto K, et al. Remarkable hydrogen storage, structural and optical properties in multi-layered Pd/Mg thin films [J]. Mater. Trans., 2002, 43: 2721
doi: 10.2320/matertrans.43.2721
|
110 |
Ouyang L Z, Tang J J, Zhao Y J, et al. Express penetration of hydrogen on Mg (10 1 ¯ 3) along the close-packed-planes [J]. Sci. Rep., 2015, 5: 10776
doi: 10.1038/srep10776
|
111 |
El-Eskandarany M S, Banyan M, Al-Ajmi F. Cold-rolled magnesium hydride strips decorated with cold-sprayed Ni powders for solid-state-hydrogen storage [J]. Int. J. Hydrogen Energy, 2019, 44: 16852
doi: 10.1016/j.ijhydene.2019.04.204
|
112 |
Karst J, Sterl F, Linnenbank H, et al. Watching in situ the hydrogen diffusion dynamics in magnesium on the nanoscale [J]. Sci. Adv., 2020, 6: eaaz0566
doi: 10.1126/sciadv.aaz0566
|
113 |
Krystian M, Zehetbauer M J, Kropik H, et al. Hydrogen storage properties of bulk nanostructured ZK60 Mg alloy processed by equal channel angular pressing [J]. J. Alloys Compd., 2011, 509: S449
doi: 10.1016/j.jallcom.2011.01.029
|
114 |
Faisal M, Gupta A, Shervani S, et al. Enhanced hydrogen storage in accumulative roll bonded Mg-based hybrid [J]. Int. J. Hydrogen Energy, 2015, 40: 11498
doi: 10.1016/j.ijhydene.2015.03.095
|
115 |
Faisal M, Balani K, Subramaniam A. Cross-sectional TEM investigation of Mg-LaNi5-Soot hybrids for hydrogen storage [J]. Int. J. Hydrogen Energy, 2021, 46: 5507
doi: 10.1016/j.ijhydene.2020.11.134
|
116 |
Patelli N, Migliori A, Morandi V, et al. Interfaces within biphasic nanoparticles give a boost to magnesium-based hydrogen storage [J]. Nano Energy, 2020, 72: 104654
doi: 10.1016/j.nanoen.2020.104654
|
117 |
Zhang Y, Zheng J G, Lu Z Y, et al. Boosting the hydrogen storage performance of magnesium hydride with metal organic framework-derived cobalt@nickel oxide bimetallic catalyst [J]. Chin. J. Chem. Eng., 2022, 52: 161
doi: 10.1016/j.cjche.2022.06.026
|
118 |
Aymonier C, Denis A, Roig Y, et al. Supported metal NPs on magnesium using SCFs for hydrogen storage: Interface and interphase characterization [J]. J. Supercrit. Fluids, 2010, 53: 102
doi: 10.1016/j.supflu.2010.02.012
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|