金属学报, 2023, 59(9): 1201-1208 DOI: 10.11900/0412.1961.2023.00196

研究论文

吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响

李嘉荣,, 董建民, 韩梅, 刘世忠

北京航空材料研究院 先进高温结构材料重点实验室 北京 100095

Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy

LI Jiarong,, DONG Jianmin, HAN Mei, LIU Shizhong

Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China

通讯作者: 李嘉荣,jrli126@126.com,主要从事单晶高温合金的研究

责任编辑: 毕淑娟

收稿日期: 2023-05-04   修回日期: 2023-07-03  

Corresponding authors: LI Jiarong, professor, Tel:(010)62497202, E-mail:jrli126@126.com

Received: 2023-05-04   Revised: 2023-07-03  

作者简介 About authors

李嘉荣,男,1962年生,研究员,博士

摘要

将标准热处理的试样分别采用粒径为150、124和100 μm白刚玉砂在0.5 MPa压力下吹砂,研究吹砂对第二代单晶高温合金DD6表面完整性的影响;对未吹砂和粒径150 μm吹砂试样分别进行760和980℃旋转弯曲高周疲劳性能测试,研究吹砂对DD6合金疲劳性能的影响。结果表明:吹砂会破坏单晶高温合金的表面完整性,使表面出现砂粒切削造成的不规则凹坑,改变表面形貌;砂粒粒径增加,表面粗糙度和显微硬度均增大;吹砂使大量位错在γ相通道中滑移,靠近表面区域位错密度较大;并且,大量位错剪切γ'相,形成反相畴界和层错;吹砂造成形变强化、引入残余应力;150 μm、0.5 MPa吹砂对DD6合金760℃旋转弯曲疲劳性能基本无影响,但会降低合金980℃疲劳性能,对低应力幅区疲劳寿命影响较大,使疲劳强度下降约7.3%。缺口效应、氧化损伤、形变强化和残余压应力的耦合作用导致吹砂与不吹砂试样疲劳寿命产生差异。

关键词: 单晶高温合金; DD6; 表面完整性; 高周疲劳; 吹砂

Abstract

DD6 is a second generation single crystal superalloy independently developed in China, which offers advantages such as high-temperature strength, stable structure, and satisfactory casting process performance. Currently, it is being widely used in development of aviation engine turbine blades. Sand blasting can be performed for surface cleaning and adjusting surface roughness of single crystal turbine blades and is an essential process in manufacturing of single crystal blades. Although sand blasting has been widely used in the manufacturing process of DD6 alloy turbine blades, only few reports studied the impact of sand blasting on the surface integrity and fatigue performance of DD6 alloy. Therefore, research is required to provide a theoretical basis for the safe service of DD6 alloy turbine blades. In this work, several specimens after a standard heat treatment are blasted with white corundum sand with 150, 124, and 100 μm diameters at 0.5 MPa to study the effect of sand blasting on the surface integrity of DD6 alloy; the rotary bending high cycle fatigue properties of the specimens without and with sand blasting (blasting with white corundum sand with 150 μm diameter) were tested at 760 and 980oC, respectively, to study the effect of sand blasting on the alloy's fatigue property. The results show that sand blasting destroys the surface integrity of the single crystal superalloy, resulting in irregular pits on the surface caused by the cutting by sand particles while changing the surface morphology as well; the surface roughness and microhardness increase with sand particle size increase; after sand blasting, many dislocations slip in the γ phase, and the dislocation density near the surface is high. Additionally, many dislocations shear the γ′ phase, forming antiphase domain boundaries and stacking faults; sand blasting results in deformation strengthening and residual stress; blasting with 150 μm diameter sand at 0.5 MPa has a small effect on the rotary bending high cycle fatigue properties of DD6 alloy at 760oC, but it considerably reduces the alloy's fatigue properties at 980oC in the low stress amplitude region, decreasing the fatigue strength of the alloy by 7.3%. The combined action of the notch effect, oxidation damage, deformation strengthening, and residual compressive stress leads to the changes in fatigue life without and with sand blasting.

Keywords: single crystal superalloy; DD6; surface integrity; high cycle fatigue; sand blasting

PDF (3115KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李嘉荣, 董建民, 韩梅, 刘世忠. 吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响[J]. 金属学报, 2023, 59(9): 1201-1208 DOI:10.11900/0412.1961.2023.00196

LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. Acta Metallurgica Sinica, 2023, 59(9): 1201-1208 DOI:10.11900/0412.1961.2023.00196

涡轮叶片工作在极为苛刻的环境下,是航空发动机中关键的热端部件之一,目前主要采用具有优良综合性能的单晶高温合金制备先进航空发动机涡轮叶片。涡轮叶片一旦发生失效,就很可能造成毁灭性的后果。大量服役实践表明:疲劳是对涡轮叶片安全服役威胁最大的失效模式[1~3]。疲劳强度对表面状态十分敏感,且表面状态对涡轮叶片的疲劳性能有决定性的影响。

为了强调表面状态的重要性,Field和Kahles[4]早在1964年就明确提出表面完整性的概念;经过近60年的发展,不同的表面完整性概念陆续被提出[5~7]。表面完整性主要包含下述内容:表面形貌、表面缺陷、微观组织和表面层的冶金化学性能、表面层物理力学性能及表面层的其他工程技术特征。研究表明,吹砂处理使铝合金表面形成了100 MPa左右的压应力,但表面粗糙度Ra提高到接近15 μm,从而造成疲劳寿命降低[8];表面处理导致了IN738LC高温合金的性能下降[9]。在喷丸表面强化方面,高玉魁等[10]研究了GH909高温合金喷丸强化残余应力场,钟丽琼等[11]研究了喷丸强化对FGH4097粉末高温合金室温高周疲劳性能的影响。

DD6合金是我国自主研制的第二代单晶高温合金,其性能优于或达到欧美第二代单晶高温合金的水平,且含有2% (质量分数)的Re,成本较低,已在我国获得广泛应用[3,12,13]。单晶涡轮叶片精铸件研制过程中有多种工序,吹砂是单晶涡轮叶片精铸件研制过程中不可缺少的工序之一,可用于表面清理和粗糙度改善等;喷丸有时用于强化单晶涡轮叶片的榫齿;但吹砂、喷丸均会破坏单晶涡轮叶片的表面完整性,降低叶片的强度,因此研究吹砂、喷丸等对单晶高温合金表面完整性和疲劳强度的影响具有重要意义。高玉魁[14]研究了喷丸强化对DD6单晶高温合金高温旋转弯曲疲劳性能的影响;王欣等[15]研究了陶瓷弹丸喷丸强化对DD6单晶高温合金表面完整性的影响;熊继春等[16]将DD6合金表面吹砂并热暴露,研究了再结晶组织对持久性能的影响。综上所述,吹砂对单晶高温合金的表面形貌、硬度、粗糙度、微观组织的影响和由吹砂导致的不同温度疲劳性能的变化及机理分析等未见公开报道。本工作主要研究了吹砂对DD6单晶高温合金表面完整性和高周疲劳强度的影响。

1 实验方法

实验选用第二代单晶高温合金DD6,其化学成分(质量分数,%)为:Cr 4.3,Co 9.0,Mo 2.0,W 8.0,Re 2.0,Ta 7.5,Nb 0.5,Al 5.6,Hf 0.1,C 0.006,Ni余量[13]。采用螺旋选晶法在真空定向凝固炉中制备[001]取向的DD6单晶试棒,应用X射线衍射(XRD)极图法测定单晶试棒的晶体取向,选取[001]取向偏离主应力轴6°以内的单晶试棒。DD6合金的热处理制度为:1290℃、1 h + 1300℃、2 h + 1315℃、4 h、空冷(AC)固溶处理,1120℃、4 h、AC一级时效处理,870℃、32 h、AC二级时效处理。将热处理后的单晶试棒按图1所示的要求加工成旋转弯曲高周疲劳性能试样,试样表面粗糙度为0.4 μm。

图1

图1   高周疲劳试样的形状和尺寸示意图

Fig.1   Schematic of shape and size of specimen for high cycle fatigue test (unit: mm)


分别选用粒径为150、124和100 μm的白刚玉砂,吹砂压力0.5 MPa,对高周疲劳性能试样进行吹砂处理。使用MARSURF PS1粗糙度仪测量表面粗糙度,采用BCPCAS4800型场发射扫描电镜(FESEM)和DCM8共聚焦显微镜观察表面形貌。将吹砂后试样剖切,采用FM-700型Vickers硬度计沿深度分布测量硬度。测试150 μm、0.5 MPa吹砂试样的疲劳性能,实验条件为:测试温度分别为760和980℃,大气环境,旋转弯曲加载方式,应力比R = -1,应力集中系数Kt = 1,频率为83.3 Hz。

采用FESEM观察组织,使用LEO1450型扫描电镜(SEM)观察疲劳断口组织形貌。吹砂后采用2种方法制备透射电镜(TEM)试样,一种为聚焦离子束(FIB)技术制样;另一种为在试样表层切2个小片,对粘在一起,切成直径3 mm圆片,用Gatan691型离子减薄仪减出薄区。疲劳性能测试后,在疲劳断口下1 mm处用线切割机沿垂直轴向切取厚度0.4 mm的薄片,双面砂纸研磨至30 μm,用减薄仪减出薄区,采用TECNAI-20型TEM观察并分析位错形态。

2 实验结果

2.1 吹砂对表面粗糙度的影响

经测量,采用粒径100、124和150 μm白刚玉砂0.5 MPa吹砂后试样表面粗糙度分别为1.23、1.63和2.41 μm。可以看出,砂粒粒径增加,表面粗糙度增大。Mellali等[17]对铝合金和高强度钢的研究表明,砂粒粒径是决定表面粗糙度的最主要因素。本研究结果与其一致。

2.2 吹砂对表面形貌的影响

不同粒径白刚玉砂0.5 MPa吹砂后试样表面三维(3D)和二维(2D)形貌如图2所示。可以看出,随砂粒粒径增加,砂粒切削的深度增大,峰谷起伏范围增加。这是由于随砂粒粒径增加,单个砂粒质量增大,相应的动能增大,对试样表面的切削作用增强。

图2

图2   不同粒径砂粒吹砂后DD6高温合金试样表面的三维和二维形貌

Fig.2   3D (a, c, e) and 2D (b, d, f) morphologies of DD6 superalloy specimens after sand blasting with granularities of 150 μm (a, b), 124 μm (c, d), and 100 μm (e, f)


2.3 吹砂对硬度的影响

不同粒径白刚玉砂0.5 MPa吹砂后试样表面层Vickers硬度随深度的变化如图3所示,图中横坐标为距离表面的深度。可以看出,随距离表面深度的增加,Vickers硬度快速下降,到达一定深度后Vickers硬度趋于稳定;深度相同时,Vickers硬度随白刚玉砂粒径的增大而增加。Vickers硬度的变化主要是由于吹砂带来的形变强化,越接近试样表面,吹砂产生的塑性变形量越大,位错增殖越多,就会表现出更高的Vickers硬度,这与喷丸强化DD6单晶高温合金表面的规律[15]相同。

图3

图3   不同粒径砂粒吹砂后试样硬度随距离表面深度的变化

Fig.3   Variations of specimen hardness with distance from surface after sand blasting with different granularities


2.4 吹砂对位错形态的影响

150 μm白刚玉砂0.5 MPa吹砂后试样的位错形态如图4所示。可以看出,γ'相仍具有较好的立方形态,在外加应力作用下,大量a / 2<011>位错在γ相通道中滑移,且靠近表面区域位错密度较大。在较大应力作用下,位错克服了运动所需的反相畴界能和层错能,大量位错剪切γ'相,形成反相畴界和层错。据报道[15],经过陶瓷喷丸的DD6合金中同样会形成高密度位错,大量位错剪切γ'相。

图4

图4   150 μm白刚玉砂0.5 MPa吹砂后DD6高温合金试样的位错形态

Fig.4   Dislocation morphologies of DD6 superalloy specimen after sand blasting with 150 μm and 0.5 MPa sand (APB—antiphase domain boundary)

(a) near surface (b) slightly away from surface


2.5 吹砂对疲劳性能的影响

未吹砂和粒径150 μm吹砂试样760℃旋转弯曲高周疲劳性能应力-寿命曲线如图5a所示。可以看出,随应力幅增加,未吹砂和吹砂后试样的疲劳寿命均降低;未吹砂和吹砂后试样的疲劳强度分别为434和431 MPa,这表明吹砂对合金760℃疲劳性能基本没有影响。采用三参数幂函数方程拟合曲线[18]

图5

图5   未吹砂和粒径150 μm砂粒吹砂后DD6高温合金试样760和980℃的应力-寿命曲线

Fig.5   Stress-fatigue life curves of DD6 superalloy specimens at 760oC (a) and 980oC (b) before and after sand blasting with 150 μm granularity (S—stress, Nf—fatigue life)


lgNf=C-mlgS-Sf

式中,mC是与材料、应力比、加载方式等有关的参数,Nf为试样断裂时的循环周次,S为应力,Sf为材料的疲劳强度。依据本研究的实验数据拟合获得方程如图5a所示。

未吹砂和粒径150 μm吹砂试样980℃旋转弯曲高周疲劳性能如图5b所示。可以看出,随应力幅增加,未吹砂和吹砂后试样的寿命均降低,这与上述760℃的规律相同。吹砂后试样的疲劳寿命低于未吹砂;应力幅较高时,2者相差较小;但随应力幅的降低,2者相差不断增大。未吹砂及0.5 MPa、150 μm吹砂试样的疲劳强度分别为425和394 MPa,吹砂后试样的疲劳强度下降7.3%。已有研究[16,19]表明,吹砂会降低单晶高温合金的持久性能与疲劳性能,本工作对高周疲劳性能的研究结果与文献[19]的结果一致。采用三参数幂函数方程(1)拟合曲线,依据本工作的实验数据拟合获得的方程如图5b所示。

2.6 疲劳断口

未吹砂和粒径150 μm吹砂试样在760和980℃旋转弯曲高周疲劳断口和疲劳源区形貌如图6所示。可以看出,760和980℃条件下的疲劳断口均没有明显的伸长和颈缩,未表现出明显的塑性变形特征。不同状态试样断口主要由疲劳源区、扩展区及瞬断区组成,这与其他单晶合金疲劳断口形貌[20~22]类似。DD6单晶高温合金高周疲劳断口的晶体学面为{111}面,均表现出明显的类解理断裂的特征[3]

图6

图6   未吹砂和粒径150 μm吹砂DD6高温合金试样在760和980℃旋转弯曲高周疲劳断口和疲劳源区形貌

Fig.6   High cycle fatigue fracture (a-d) and source zone (e-h) morphologies of DD6 superalloy specimens before (a, e, c, g) and after (b, f, d, h) sand blasting with 150 μm granularity under rotational bending at 760oC (a, e, b, f) and 980oC (c, g, d, h) (a, e) S = 460 MPa, Nf = 1.10 × 106 cyc (b, f) S = 500 MPa, Nf = 1.97 × 105 cyc (c, g) S = 440 MPa, Nf = 7.46 × 106 cyc (d, h) S = 500 MPa, Nf = 1.44 × 105 cyc


760℃时,未吹砂试样疲劳断口形貌如图6ae所示。可看出,试样的疲劳源起源于试样表面。据报道[3,22,23],旋转弯曲的加载方式使试样表面承受更大的应力,所以试样表面或亚表面缺陷处易产生应力集中,从而导致合金疲劳裂纹萌生于表面或亚表面,本工作结果与相关报道一致。吹砂后试样断口形貌如图6bf所示。可以看出,疲劳源起始于试样亚表面疏松处。这是由于吹砂使试样表层产生的高密度位错提高了疲劳裂纹萌生抗力并降低了裂纹扩展速率,从而使疲劳源不易在表面萌生,这与FGH4097粉末高温合金喷丸强化结果[11]类似。

980℃时,未吹砂试样疲劳断口形貌如图6cg所示。可以看出,试样的疲劳源起源于试样表面氧化产生的裂纹处,疲劳断裂面存在多个裂纹源。吹砂后试样疲劳断口形貌如图6dh所示。可以看出,试样表面氧化可分为2层,外层具有脆性特征,存在明显的横向和纵向裂纹,内层氧化比较严重,为多源开裂。

2.7 疲劳断口附近显微组织与位错

粒径150 μm吹砂试样760和980℃旋转弯曲高周疲劳断裂后的显微组织如图7所示。可以看出,760℃时,表面氧化层很薄;980℃时,表面氧化层较厚,氧化层存在很多横向及纵向裂纹。

图7

图7   粒径150 μm吹砂试样760和980℃旋转弯曲高周疲劳断裂后的横截面组织

Fig.7   Cross sectional microstructures of DD6 superalloy specimens after sand blasting with 150 μm granularity under rotational bending at 760oC (a) and 980oC (b)


图8为疲劳断口附近位错形态。可以看出,760和980℃时,合金断裂后γ'相仍保持较好的立方化形态。760℃低应力幅时(图8a),a / 2<011>位错主要集中在γ相通道中运动,未发现位错对剪切γ'相,且未见层错产生。760℃高应力幅时(图8b),2个基体a / 2<101>位错在γ'/γ相界面反应形成a / 2<112>位错,a / 2<112>位错通过分解成层错和分位错的方式切入γ'相,而a / 3<1¯12>领头位错剪切进入γ'相,a / 6<1¯12>分位错则停留在γ'/γ相界面上,位错反应可写成:a / 2<101> + a / 2<1¯01>→a / 3<1¯12> + SISF (超点阵内禀层错) + a / 6<1¯12>[24,25]。基体位错继续反应形成a / 6<1¯12>和a / 3<1¯12>位错,在2个a / 6<1¯12>分位错之间形成反相畴界,a / 3<1¯12>位错不断进入γ'相,形成a[1¯12]位错带[24,25]。位错对切割γ'相和γ'相中层错如图8b所示。980℃低应力幅时,可见位错对剪切γ'相,如图8c所示,但未见层错。980℃高应力幅时,γ'相产生层错,且位错对剪切γ'相数量明显增加,如图8d所示。

图8

图8   150 μm吹砂后DD6高温合金试样760和980℃旋转弯曲高周疲劳断口附近的位错形态

Fig.8   Dislocation morphologies near high cycle fatigue fracture of DD6 superalloy specimens under rotational bending at different temperatures after sand blasting with 150 μm granularity

(a) 760oC, S = 430 MPa, Nf = 7.54 × 106 cyc (b) 760oC, S = 600 MPa, Nf = 8.07 × 104 cyc

(c) 980oC, S = 370 MPa, Nf = 8.71 × 106 cyc (d) 980oC, S = 700 MPa, Nf = 2.78 × 104 cyc


3 分析讨论

吹砂以压缩空气为动力,将砂粒高速喷射到需要处理的工件表面,砂粒的冲击和切削作用使工件表面获得一定的清洁度和粗糙度[26]。吹砂过程使试样表面受高速砂粒连续撞击和切削,会造成其表层材料发生塑性变形,同时使试样表面形貌和尺寸发生变化。表面粗糙度、切削量和表层组织损伤程度随砂粒粒径的增加而增大。已有研究[10]表明,吹砂过程中砂粒撞击金属材料表面会使变形层内组织结构、应力状态和分布及表面粗糙度发生变化。

吹砂后试样表层产生塑性变形,大量位错发生交割和增殖,形成许多亚晶,并增加空位、间隙原子、层错等结构缺陷,从而阻碍位错的进一步运动,引起形变强化,而形变强化能阻止已有裂纹的扩展和新裂纹的产生,使表面屈服强度提高[15,27]。并且,吹砂后表层引入残余压应力。研究[10,26~28]发现,疲劳裂纹往往起源于试样亚表面,残余压应力能够延缓疲劳裂纹萌生过程和抑制裂纹早期扩展,有利于提高疲劳抗力,这与本工作结果一致。高玉魁[14]的研究表明,对镍基单晶高温合金进行喷丸处理,能显著抑制裂纹的萌生,延长其疲劳寿命。

760℃时,表面氧化损伤较小,吹砂引入的形变强化和残余压应力层有利于提高疲劳性能。但是吹砂造成的表面粗糙度增加,使表面出现大量被砂粒尖角切削后不规则的凹坑,而凹坑的存在会带来缺口效应,这对疲劳性能产生不良影响。研究[27,29,30]表明,表面粗糙度增加会引起疲劳性能下降。Remes等[31]对一种高强钢的研究表明,残余压应力和低的表面粗糙度会提高疲劳性能。形变强化和残余压应力对疲劳性能有增益作用,但粗糙度增加带来的缺口效应会引起疲劳性能下降,抵消了形变强化和残余压应力的增益作用。本工作中,吹砂后试样与未吹砂试样疲劳性能相当,这是吹砂引入的形变强化和压应力层的增益作用与缺口效应负面影响的耦合作用所导致。

980℃时,吹砂后试样疲劳性能变化受下述因素的影响:(1) 吹砂后试样表面凹坑带来的缺口效应,降低疲劳性能;(2) 随应力幅降低,高温旋转弯曲高周疲劳寿命增加,表面氧化程度逐渐加大,氧化损伤对疲劳断裂的影响增加,降低疲劳性能;(3) 吹砂后试样表面形变强化层具有脆性特征,在高温和循环应力作用下会形成裂纹,并促进亚表面发生氧化,使试样表面层承载能力下降;已有研究[31~33]表明,形变强化会导致高温条件下试件的疲劳强度大幅降低,表面冷作硬化因素会引起GH49合金900℃高周疲劳寿命降低35%以上;(4) 虽然吹砂引入的残余压应力对疲劳寿命有增益作用,但在高温条件下,位错运动加剧,残余应力快速释放,残余压应力增益作用显著降低;研究[33]表明,随环境温度提高,喷丸处理后的AISI4140试件表面残余应力的释放速度随之加快,且随应力幅降低,测试时间增加,残余应力释放更加充分。综上所述,吹砂后980℃疲劳寿命低于未吹砂疲劳寿命,2者之差随应力幅的减小而增大,这是缺口效应、氧化损伤与形变强化层的负面影响及残余压应力快速释放使性能增益减小等因素耦合作用所导致的。

4 结论

(1) 吹砂后靠近表面区域位错大量增殖,且大量位错剪切γ'相,形成反相畴界和层错。吹砂造成形变强化、引入残余应力,使表面出现砂粒切削凹坑、表面粗糙度增加,破坏了单晶高温合金表面完整性。

(2) 未吹砂与粒径150 μm吹砂DD6单晶高温合金试样760℃旋转弯曲高周疲劳强度分别为434和431 MPa,980℃旋转弯曲高周疲劳强度分别为425和394 MPa。

(3) 吹砂引入形变强化和压应力层的增益作用与缺口效应负面影响的耦合作用导致吹砂后760℃疲劳寿命与未吹砂疲劳寿命相当。

(4) 缺口效应、氧化损伤与形变强化层的负面影响及残余压应力快速释放使性能增益减小等因素耦合导致吹砂后980℃疲劳寿命低于未吹砂疲劳寿命,2者之差随应力幅的减小而增大。

参考文献

Han L, Huang D W, Yan X J, et al.

Combined high and low cycle fatigue life prediction model based on damage mechanics and its application in determining the aluminized location of turbine blade

[J]. Int. J. Fatigue, 2019, 127: 120

DOI      URL     [本文引用: 1]

Wang R, Zhang B, Hu D, et al.

Thermomechanical fatigue experiment and failure analysis on a nickel-based superalloy turbine blade

[J]. Eng. Fail. Anal., 2019, 102: 35

DOI     

Thermomechanical fatigue (TMF) experiment with dwell times on a nickel-based superalloy turbine blade was conducted. The strain field and temperature field of the test section were simulated well through adjusting gripping fixture and induction coil. In addition to the loading, heating, cooling and control subsystems, high temperature strain measurement subsystem was introduced into the experiment to ensure the accuracy of the simulation results of service condition for the test section. In the whole experiment, the service condition of the test section was reproduced. The experiment result showed that TMF crack initiated at the trailing edge of the test section and propagated along the leading edge direction. Using the scanning electron microscope (SEM), multiple crack sources at the surface of turbine blade were observed and the crack surface was oxidized seriously. In addition, based on the fractographic and metallographic observation, the mixed features of intergranular fracture and transgranular fracture were found. The interaction of oxidation, creep damage and fatigue damage is an important reason for the TMF failure of the turbine blade.

Li J R, Xie H J, Han M, et al.

High cycle fatigue behavior of second generation single crystal superalloy

[J]. Acta Metall. Sin., 2019, 55: 1195

[本文引用: 4]

李嘉荣, 谢洪吉, 韩 梅 .

第二代单晶高温合金高周疲劳行为研究

[J]. 金属学报, 2019, 55: 1195

[本文引用: 4]

Field M, Kahles J F.

The surface integrity of machined-and-ground high strength steels

[J]. DIMC Report, 1964, 210: 54

[本文引用: 1]

Zhao Z Y.

Application of high strength alloy and technonolgy of anti-fatigue manufacturing

[J]. Aeronaut. Manuf. Technol., 2007, (10): 30

[本文引用: 1]

赵振业.

高强度合金应用与抗疲劳制造技术

[J]. 航空制造技术, 2007, (10): 30

[本文引用: 1]

Wang R Z.

Surface integrity and fracture resistance of engineering metallic materials and components

[J]. China Surf. Eng., 2011, 24(5): 55

王仁智.

工程金属材料/零件的表面完整性及其断裂抗力

[J]. 中国表面工程, 2011, 24(5): 55

He B L, Deng H P.

Research status and development trend of surface integrity

[J]. Surf. Technol., 2015, 44(9): 140

[本文引用: 1]

何柏林, 邓海鹏.

表面完整性研究现状及发展趋势

[J]. 表面技术, 2015, 44(9): 140

[本文引用: 1]

Cheng Y M, Liu J, Fu Z H, et al.

Effect of surface treatment on mechanical properties of 7B05 aluminum alloy MIG butt welded joints

[J]. Hot Work. Technol., 2016, 45(9): 63

[本文引用: 1]

程永明, 刘 建, 付正鸿 .

表面处理对7系铝合金MIG焊对接接头力学性能的影响

[J]. 热加工工艺, 2016, 45(9): 63

[本文引用: 1]

Ye Y, Zou G, Long W, et al.

TLP repaired IN738LC superalloy with uneven surface defect gap width after post heat treatment: Microstructure and mechanical properties

[J]. J. Alloys Compd., 2018, 748: 26

DOI      URL     [本文引用: 1]

Gao Y K, Yin Y F, Li X B, et al.

Research on residual stress field of GH909 alloy by shot peening

[J]. J. Mater. Eng., 2002, (4): 40

[本文引用: 3]

高玉魁, 殷源发, 李向斌 .

GH909合金喷丸强化残余应力场的研究

[J]. 材料工程, 2002, (4): 40

[本文引用: 3]

Zhong L Q, Liang Y L, Yan Z, et al.

Effect of shot peening on high cycle fatigue limit of FGH4097 P/M superalloys at room temperature

[J]. Rare Met. Mater. Eng., 2018, 47: 2198

[本文引用: 2]

钟丽琼, 梁益龙, 严 振 .

喷丸强化对FGH4097粉末高温合金室温高周疲劳极限的影响

[J]. 稀有金属材料与工程, 2018, 47: 2198

[本文引用: 2]

Li J R, Zhong Z G, Tang D Z, et al.

A low-cost second generation single crystal superalloy DD6

[A]. Superalloys 2000 [C]. Warrendale, PA: TMS, 2000: 777

[本文引用: 1]

Li J R, Zhao J Q, Liu S Z, et al.

Effects of low angle boundaries on the mechanical properties of single crystal superalloy DD6

[A]. Superalloys 2008 [C]. Warrendale, PA: TMS, 2008: 443

[本文引用: 2]

Gao Y K.

Influence of shot peening on high temperature rotating bending fatigue property of DD6 single crystal superalloy

[J]. Heat Treat. Met., 2009, 34(8): 60

[本文引用: 2]

高玉魁.

喷丸强化对DD6单晶高温合金高温旋转弯曲疲劳性能的影响

[J]. 金属热处理, 2009, 34(8): 60

[本文引用: 2]

Wang X, You H D, Li J R, et al.

Influence of ceramic-shot-peening on surface integrity of DD6 single crystal superalloy

[J]. J. Mater. Eng., 2014, (4): 53

[本文引用: 4]

王 欣, 尤宏德, 李嘉荣 .

陶瓷弹丸喷丸强化对DD6单晶高温合金表面完整性的影响

[J]. 材料工程, 2014, (4): 53

[本文引用: 4]

Xiong J C, Li J R, Sun F L, et al.

Microstructure of recrystallization and their effects on stress rupture property of single crystal superalloy DD6

[J]. Acta Metall. Sin., 2014, 50: 737

DOI      [本文引用: 2]

The specimens of single crystal superalloy DD6 were grit blasted and heat treated at 1100, 1200, and 1300 ℃ for 4 h at vacuum atmosphere respectively, then the microstructure of recrystallized DD6 alloy and their effects on the stress rupture performance were investigated. The results showed that cellular recrystallization nucleated in grit blasted samples heat treated at 1100 ℃ for 4 h, the dislocation tangles were found in the front of cellular recrystallization grain boundary in DD6 alloy, equiaxed recrystallization grains nucleated in grit blasted samples heat treated at 1300 ℃ for 4 h, and the carbides precipitate at the equiaxed recrystallization grain boundary, while the coexistence of equiaxed recrystallization grains and cellular recrystallization, defined as mixed recrystallization, occurred in the grit blasted samples heat treated at 1200 ℃ for 4 h. The cellular recrystallization reduced the stress rupture lives of DD6 alloy slightly, and the equiaxed recrystallization reduced stress rupture lives seriously, while the reduction degree of the stress rupture lives of the mixed recrystallization was between cellular recrystallization and equiaxed recrystallization. Besides this, with increase of depth of recrystallization and stress, the stresses rupture life decreased. It was also found that the fracture surface configuration was belonging to intergranular fracture with equiaxed recrystallization samples. The characteristic of the fracture surface changed to dimple fracture with cellular recrystallization samples, at all these condition the crack nucleated on the recrystallization grain boundaries of specimens during stress rupture process.

熊继春, 李嘉荣, 孙凤礼 .

单晶高温合金DD6再结晶组织及其对持久性能的影响

[J]. 金属学报, 2014, 50: 737

DOI      [本文引用: 2]

对单晶高温合金DD6进行表面吹砂处理, 然后分别在1100, 1200和1300 ℃保温4 h, 研究了不同加热条件下DD6合金的再结晶组织及其对持久性能的影响. 结果表明, DD6合金吹砂试样1100 ℃加热4 h形成胞状再结晶组织, 胞状再结晶晶界前沿的基体中存在大量的位错缠结, 合金的持久寿命略微降低; 1200 ℃加热4 h形成胞状再结晶与等轴再结晶同时存在的混合型再结晶组织, 合金的持久寿命降低; 1300 ℃加热4 h形成等轴再结晶组织, 等轴再结晶晶界上发现碳化物析出, 合金的持久寿命严重降低. 带有等轴再结晶组织的持久试样的断口形貌为沿晶断口, 带有胞状再结晶组织的持久试样的断口形貌为韧窝断口, 带有再结晶组织的试样裂纹起源于再结晶晶界.

Mellali M, Grimaud A, Leger A C, et al.

Alumina grit blasting parameters for surface preparation in the plasma spraying operation

[J]. J. Therm. Spray Technol., 1997, 6: 217

DOI      URL     [本文引用: 1]

Xie H J, Li J R, Han M, et al.

Effect of over-temperature on microstructure and high cycle fatigue properties of DD6 single crystal superalloy

[J]. Rare Met. Mater. Eng., 2018, 47: 2483

[本文引用: 1]

谢洪吉, 李嘉荣, 韩 梅 .

超温对DD6单晶高温合金组织及高周疲劳性能影响

[J]. 稀有金属材料与工程, 2018, 47: 2483

[本文引用: 1]

Han M, Xie H J, Li J R, et al.

Effect of recrystallization on axial high cycle fatigue properties of DD6 single crystal superalloy

[J]. J. Mater. Eng., 2019, 47(6): 161

[本文引用: 2]

韩 梅, 谢洪吉, 李嘉荣 .

再结晶对DD6单晶高温合金轴向高周疲劳性能的影响

[J]. 材料工程, 2019, 47(6): 161

[本文引用: 2]

Lukáš P, Kunz L, Svoboda M.

High-temperature ultra-high cycle fatigue damage of notched single crystal superalloys at high mean stresses

[J]. Int. J. Fatigue, 2005, 27: 1535

DOI      URL     [本文引用: 1]

Liu Y, Yu J J, Xu Y, et al.

High cycle fatigue behavior of a single crystal superalloy at elevated temperatures

[J]. Mater. Sci. Eng., 2007, A454-455: 357

Lamm M, Singer R F.

The effect of casting conditions on the high-cycle fatigue properties of the single-crystal nickel-base superalloy PWA 1483

[J]. Metall. Mater. Trans., 2007, 38A: 1177

[本文引用: 2]

Zhu X, Shyam A, Jones J W, et al.

Effects of microstructure and temperature on fatigue behavior of E319-T7 cast aluminum alloy in very long life cycles

[J]. Int. J. Fatigue, 2006, 28: 1566

DOI      URL     [本文引用: 1]

Huang M. Creep strengthening mechanisms in Re-doping nickel-based single crystal superalloy and defect structure in single crystal blades [D]. Beijing: Tsinghua University, 2015

[本文引用: 2]

黄 鸣. 含Re镍基单晶高温合金强化机理及单晶叶片的缺陷研究 [D]. 北京: 清华大学, 2015

[本文引用: 2]

Rae C M F, Zhang L.

Primary creep in single crystal superalloys: Some comments on effects of composition and microstructure

[J]. Mater. Sci. Technol., 2009, 25: 228

DOI      URL     [本文引用: 2]

Yang Z X, Liu M, Deng C M, et al.

Review on the pretreatment of substrate for thermal spray process

[J]. China Surf. Eng., 2012, 25(2): 8

[本文引用: 2]

杨震晓, 刘 敏, 邓春明 .

热喷涂基体表面前处理技术的研究进展

[J]. 中国表面工程, 2012, 25(2): 8

[本文引用: 2]

Sasahara H.

The effect on fatigue life of residual stress and surface hardness resulting from different cutting conditions of 0.45%C steel

[J]. Int. J. Mach. Tools Manuf., 2005, 45: 131

DOI      URL     [本文引用: 2]

Ghanem F, Sidhom H, Braham C, et al.

Effect of near-surface residual stress and microstructure modification from machining on the fatigue endurance of a tool steel

[J]. J. Mater. Eng. Perform., 2002, 11: 631

DOI      URL     [本文引用: 1]

Zhang M, Wang W Q, Wang P F, et al.

The fatigue behavior and mechanism of FV520B-I with large surface roughness in a very high cycle regime

[J]. Eng. Fail. Anal., 2016, 66: 432

DOI      URL     [本文引用: 1]

Ryu H R, Kim W S, Ha W II, et al.

Effect of toe grinding on fatigue strength of ship structure

[J]. J. Ship Prod., 2008, 24: 152

[本文引用: 1]

Remes H, Korhonen E, Lehto P, et al.

Influence of surface integrity on the fatigue strength of high-strength steels

[J]. J. Constr. Steel Res., 2013, 89: 21

DOI      URL     [本文引用: 2]

Ren J X, Hua D A. Grinding Principle [M]. Beijing: Publishing House of Electronics Industry, 2011: 242

任敬心, 华定安. 磨削原理 [M]. 北京: 电子工业出版社, 2011: 242

Xu R F, Zhou Y X, Yang S L, et al.

Research status of influence mechanism of surface integrity on fatigue behavior of workpieces

[J]. Aeronaut. Manuf. Technol., 2019, 62(14): 96

[本文引用: 2]

徐汝锋, 周永鑫, 杨慎亮 .

机械加工表面完整性影响试件疲劳性能的研究现状

[J]. 航空制造技术, 2019, 62(14): 96

[本文引用: 2]

/