金属学报, 2023, 59(11): 1541-1546 DOI: 10.11900/0412.1961.2021.00490

亚共晶Al-Si合金中微量元素La变质共晶Si的关键影响因素

张丽丽1, 吉宗威2, 赵九洲,1, 何杰1, 江鸿翔1

1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016

2.南方科技大学 材料科学与工程学院 深圳 518055

Key Factors Influencing Eutectic Si Modification in Al-Si Hypoeutectic Alloy by Trace La

ZHANG Lili1, JI Zongwei2, ZHAO Jiuzhou,1, HE Jie1, JIANG Hongxiang1

1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

2.Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China

通讯作者: 赵九洲,jzzhao@imr.ac.cn,主要从事合金凝固的研究

责任编辑: 肖素红

收稿日期: 2021-11-12   修回日期: 2022-01-14  

基金资助: 国家重点研发计划项目(2021YFA0716303)
中国载人空间站项目
国家自然科学基金项目(51901231)
国家自然科学基金项目(51971227)

Corresponding authors: ZHAO Jiuzhou, professor, Tel:(024)23971918, E-mail:jzzhao@imr.ac.cn

Received: 2021-11-12   Revised: 2022-01-14  

Fund supported: National Key Research and Development Program of China(2021YFA0716303)
China's Manned Space Station Project
National Natural Science Foundation of China(51901231)
National Natural Science Foundation of China(51971227)

作者简介 About authors

张丽丽,女,1987年生,副研究员,博士

摘要

理论分析了亚共晶Al-Si合金中微量元素La变质共晶Si的关键影响因素。结果表明,La在α-Al中最大固溶度及La与Al、Si的相互作用参数决定其对共晶Si的变质效果。当La的添加量低于其在α-Al中最大固溶度时,La分布在α-Al和共晶Si中,其变质效果随着La添加量的增加而增加。当La的添加量大于其在α-Al中最大固溶度时,由于La与Al、Si的相互作用参数较大且2者相近,会形成含Al、Si、La的三元化合物,计算结果表明,在各种可能Al、Si、La的化合物中,AlSiLa的形成热较大,且与Al熔体间的界面能较低,最易在熔体中形成;此时,La分布在α-Al、AlSiLa和共晶Si中,其中La在α-Al和共晶Si中的浓度基本不随La添加量的增加而变化,变质效果亦基本保持不变。当变质元素的添加量接近其在α-Al中的最大固溶度时,变质效果最佳。

关键词: 亚共晶Al-Si合金; 变质; 相互作用参数; 微量元素La; 固溶度

Abstract

The modification of eutectic Si to fiber morphology from coarse plate-like morphology is essential for producing an Al-Si hypoeutectic alloy. Furthermore, chemical modification through the addition of modifying elements, such as Na and Sr, to melt is the most widely used method in industrial production to improve microstructures. Recently, the effect of rare earth metals on the eutectic Si modification has also attracted considerable attention, especially for the economical element La. Key factors influencing eutectic Si modification in Al-Si hypoeutectic alloy by trace La are theoretically explored. The results demonstrate that the solubility of La in the primary α-Al phase and interaction parameter between La and Al (or Si) primarily contribute to the eutectic Si modification. When the addition level of trace La is within its solubility in the primary α-Al phase, La distributes in α-Al and eutectic Si, and the modification effect increases with the La addition level. When the addition level of trace La is greater than its solubility in α-Al, a ternary compound containing Al, Si, and La exists before the eutectic reaction due to the significant value of the interaction parameter between La and Al (or Si). Calculated results further prove that the composition of the ternary compound is AlSiLa due to the substantial value of heat for the formation of AlSiLa and the small value of interfacial energy between Al melt and AlSiLa. Under this condition, La distributes in α-Al, AlSiLa, and eutectic Si, and the La content in α-Al and eutectic Si almost remain constant. Thus, the modification effect almost stays unchanged with La addition. A suitable modification effect is achieved when the La addition level is around its solubility in the primary α-Al phase.

Keywords: Al-Si hypoeutectic alloy; modification; interaction parameter; trace element La; solubility

PDF (801KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张丽丽, 吉宗威, 赵九洲, 何杰, 江鸿翔. 亚共晶Al-Si合金中微量元素La变质共晶Si的关键影响因素[J]. 金属学报, 2023, 59(11): 1541-1546 DOI:10.11900/0412.1961.2021.00490

ZHANG Lili, JI Zongwei, ZHAO Jiuzhou, HE Jie, JIANG Hongxiang. Key Factors Influencing Eutectic Si Modification in Al-Si Hypoeutectic Alloy by Trace La[J]. Acta Metallurgica Sinica, 2023, 59(11): 1541-1546 DOI:10.11900/0412.1961.2021.00490

亚共晶Al-Si合金的组织主要由初生相α-Al和共晶Si组成,由于具有较佳性能而被广泛应用于汽车、航空航天等领域[1~4]。该合金的性能与凝固组织中Si的形态密切相关。常规凝固条件下,共晶Si沿<112>方向优先生长成为粗大的板片状,严重割裂基体,大大降低合金的力学性能。因此,对共晶Si进行变质处理,将其由粗大的板片状转变为细小的短棒状,显得尤为必要[5~7]。目前的工业生产中,通常通过向合金熔体中添加Na或Sr来变质共晶Si。虽然这2种元素对共晶Si的变质效果较好,但均存在一定问题,比如:Na的吸收率较低,在熔体中实际含量不易控制,而且有效变质期较短;相比Na,虽然Sr的吸收率较高、有效变质期较长,但添加Sr的合金气孔率明显增加,且Sr易与铝合金细化剂Al-Ti-B中的B反应,导致变质效果下降[8,9]

研究[10]表明,添加适量稀土不仅能净化铝合金熔体,有效提高熔体质量、减少合金缺陷,而且也能变质和细化合金凝固组织,有效改善合金组织、提高合金的力学性能。自20世纪90年代以来,稀土元素,尤其是相对廉价的La元素等对Al-Si合金凝固组织影响的研究引起了人们的广泛关注。但以往的研究中,有关La用量说法不一,通常在0.1%~2% (质量分数,下同)间。近期的研究[11~15]表明,微量的La (0.01%)便能大幅细化基体,并与变质剂Na和Sr类似,通过诱发交错孪晶、增加孪晶密度来影响共晶Si的长大行为,将粗大的板片状共晶Si转变为细小的短棒状,从而有效提升合金力学性能。本工作将进一步深入探究微量La变质共晶Si的关键影响因素,并提出共晶Si变质元素选取原则。

1 理论模型

1.1 α-Al(S)/Al(L)界面处液相前沿溶质浓度分布

对含有微量La的亚共晶Al-Si合金熔体来说,在其冷却凝固过程中,α-Al晶粒生长时不断向熔体中排出溶质M (La或Si,平衡分配系数kM < 1),导致Mα-Al(S)/Al(L)界面处熔体一侧富集,α-Al(S)/Al(L)界面处熔体中M浓度(摩尔分数) xM*L[16,17]

xM*L=xM0kM1-1-kMexp-kMvRDM
(1)

式中,xM0M的初始浓度,vα-Al(S)/Al(L)界面的移动速率,R为距α-Al中心的距离,DMM在Al熔体中的扩散系数。

式(1)可见,α-Al凝固初期(R ≈ 0),α-Al(S)/Al(L)界面处熔体和固相浓度分别为xM0kMxM0;随着凝固的进行,α-Al很快进入稳态生长阶段,此时界面处熔体和固相浓度分别为xM0 / kM和min(xM0, SMα-Al),其中SMα-AlMα-Al中的最大固溶度,如图1所示。

图1

图1   α-Al晶粒周围溶质M (La或Si)浓度分布示意图

Fig.1   Solute M (La or Si) concentration profile around an α-Al grain (xM0 is the initial concentration of solute M; kM and xME are the equilibrium partition coefficient and eutectic composition in Al-M binary system, respectively; SMα-Al is the maximum solubility of M in the α-Al phase; xM*L and x-Mα-Al are the concentration of solute M in the melt and in the α-Al at α-Al/melt interface, respectively; xML(T1) and xML(T2) are the solute M concentration in the melt ahead of α-Al/melt interface at temperatures T1 and T2, respectively; m is stoichiometric ratio)


α-Al(S)/Al(L)界面前沿熔体中,M的浓度xML随距界面距离的增加以指数形式降低[16]

 xML=xM0+xM*L-xM0exp-vzDM
(2)

式中,z为距α-Al(S)/Al(L)界面处的距离。

对于α-Al的稳态生长阶段来说,当La的初始浓度xLa0小于某一临界值xLaC时,La在α-Al(S)/Al(L)界面处熔体中富集的浓度为xLa0 / kLa,熔体中无Al m Si m La (m为化学计量比)化合物形成;当xLa0大于xLaC时,La在α-Al(S)/Al(L)界面处熔体中的浓度大于xLaC0 / kLa,导致在α-Al(S)/Al(L)界面处形成Al m Si m La化合物(如图1所示),消耗La浓度。前期研究[12,14]表明,临界值xLaC约等于La在α-Al中的最大固溶度SLaα-AlxLaC0 / kLa=xLaE (xLaE为共晶成分)。

热力学上,Al m Si m La化合物的沉淀析出行为取决于熔体中La和原子i (Al或Si)间的键能εLa-iεLa-i 数值越大,Al m Si m La越容易析出。εLa-i 可由熔体中La和i原子间的相互作用参数ΩLa-i 确定[18,19]

εLa-i=ΩLa-iNaZ
(3)
ΩLa-i1-xLa*i2=RgTlnγLa*i
(4)
xLa*i=xLa*Lxi*L+xLa*L
(5)

式中,Z = 12为熔体中配位数,Na为Avogadro常数,Rg为气体常数,T为热力学温度,xLa*i为界面处熔体中i-La二元系中La的浓度,xLa*Lxi*L分别为界面处熔体中La和i的浓度,γLa*i为界面处熔体中i-La二元系中La的活度系数,可用下式计算:

lnγLa*i=1-ln1-1-xLa*iAi/La-xLa*i1-1-xLa*iAi/La-1-xLa*i1-ALa/i1-xLa*iALa/i
(6)

式中,Ai/LaALa/i 为Wilson参数,可由二元无限稀溶液活度系数γLa*ixLa*i0γi*ixi*i0求解:

lnγLa*ixLa*i0=-ln1-Ai/La+ALa/i
(7)
lnγi*ixi*i0=-ln1-ALa/i+Ai/La
(8)
lnγLa*ixLa*i0=aLaifLai1+uLaϕLa-ϕiRgTVi2/3
(9)
aLai=1-0.1T1TmLa+1Tmi
(10)
fLai=2pVLa2/3Vi2/31nws1/3La+1nws1/3iqpnwsLa1/3-nwsi1/32-
ϕLa-ϕi2-b(rp)La(rp)i                 
(11)

式中,aLai 为与合金组元熔点相关的参数;fLai 是表征合金形成热的参数;TmLaTmi 分别为La和i的熔点;uLa、(rp)La和(rp) i 分别为与元素La和i有关的常数;ϕLaϕi 分别为元素La和i的电负性;(nws)La和(nws) i 分别为La和i的电子密度(每1.48 × 10-31 m-3内的电子数);qp为9.4 V2VLaVi 分别为La和i的摩尔体积;pq是与合金组元性质有关的参数,对于组元分别为2种非过渡金属、1种非过渡金属与1种过渡金属以及2种过渡金属的合金来说,分别为10.6、12.3和14.1;b是与合金状态有关的参数,对于固态合金、1种非过渡金属与1种过渡金属组成的合金熔体以及其他合金来说,分别为1.0、0.73和0。相关参数数值见表1[20,21]

表1   计算中涉及的相关参数[20,21]

Table 1  Parameters used in the calculations[20,21]

ElementTm / KV 2/3 / (cm2·mol-2/3)nws1/3ϕ / V(r / p) / Vu
Al9334.601.394.201.90.07
Si16854.201.504.702.10.04
La11937.981.183.170.70.07

Note:Tm—melting point, V—molar volume, nws—electron density, ϕ—electronegativity, r / p and u—parameters related to element Al, Si, and La

新窗口打开| 下载CSV


键能体现的另一种形式是元素间化合物的形成热。键能越高,元素间化合物形成热越负,越容易析出。本工作采用密度泛函理论对Al m Si m La形成热ΔfHAlmSimLa进行计算,具体参数如下:Al、Si和La原子的价电子构型分别设置为Al(3s23p1)、Si(3s23p2)和La(5s25p65d16s2);平面截断能设定为294 eV;Brillouin区k点取样间距低于2π × 0.3 nm-1;每个原子上的作用力< 0.1 eV/nm作为收敛判据[22]

Al m Si m La化合物析出与否还与熔体和Al m Si m La间的界面能σAl/AlmSimLa密切相关。σAl/AlmSimLa越小,Al m Si m La析出所需的过冷度越低。σAl/AlmSimLa可用下式计算[23]

σAl/AlmSimLa=1ωAl/AlmSimLa0.364mΩAl-Si+ΩAl-La-ΔfHAlmSimLa+0.310×1.06fb1/3mΔmHAl+mΔmHSi+ΔmHLa2m+1+(3.5±1)T
(12)

式中,ΩAl-SiΩAl-La分别为Al-Si和Al-La熔体中Al和Si、Al和La原子间的相互作用参数;fb = 0.74是体堆垛系数;ωAl/AlmSimLaωAlωSi=fNaVAlVSi1/3为熔体和Al m Si m La界面的摩尔面积,ωAlωSi分别为元素Al和Si的摩尔面积,VAlVSi分别为元素Al和Si的摩尔体积;ΔmHAl = 10711 J/mol、ΔmHSi = 50208 J/mol和ΔmHLa = 6196.5 J/mol分别为Al、Si和La的熔化焓[24]

1.2 共晶SiLa浓度

在亚共晶Al-Si合金的凝固组织中,La以3种形式存在:固溶在α-Al中、可能形成Al m Si m La三元化合物及在共晶Si中。其中只有后者对共晶Si的变质有作用。根据如下溶质守恒公式可求得共晶Si中La的浓度xLaSi

xLa0=Xα-Alx-Laα-Al+XTexLaTe+1-Xα-Al-XTexLaSixSiE
(13)
xSi0=Xα-Alx-Siα-Al+XTexSiTe+1-Xα-Al-XTexSiEXα-Alx-Siα-Al+1-Xα-AlxSiE
(14)

式中,Xα-AlXTe分别为α-Al和Al m Si m La化合物的摩尔分数,xSiE为共晶Si浓度,xLaTexLaSi分别为La在Al m -Si m La化合物和共晶Si中的浓度,xSiTe为Si在Al m Si m La化合物中的浓度,x-Laα-Alx-Siα-Al分别为La和Si在α-Al中的平均浓度,对于α-Al的稳态生长阶段来说,x-Mα-Al=minxM0, SMα-Al

式(13)和(14)可知,x-Laα-AlΩLa-i 共同决定变质效果。当x-Laα-Al越小、ΩLa-i 越小,越不易形成三元化合物,xLaSi越大,变质效果越强;当xLa0的添加量接近其在α-Al中最大固溶度时,变质效果最佳。

2 结果与讨论

通过式(7)~(11)计算得到的850 K时Wilson参数分别为:ALa/Al = -19.7302、AAl/La = -11.9213、ALa/Si = -32.308、ASi/La = -18.5573、AAl/Si = -0.6322、ASi/Al = -0.5412。基于Wilson参数计算得到的ΩLa-i 随La浓度的变化如图2所示。可见,相比于ΩAl-SiΩLa-AlΩLa-Si的绝对值较大且2者相近。说明当xLa0大于SLaα-Al时,易倾向于形成Al m Si m La三元化合物。

图2

图2   La和i原子(Al或Si)间的相互作用参数ΩLa-i 随界面处熔体中La-i二元系中La浓度xLa*i的变化

Fig.2   Calculated results for the interaction parameters of La-i melt (ΩLa-i ) as a function of La concentration in the i-M system at α-Al/melt interface(xLa*i) (ΩLa-Al, ΩLa-Si, and ΩAl-Si are the interaction parameters of La-Al melt, La-Si melt, and Al-Si melt at 850 K, respectively. Inset shows the enlarged view of ΩLa-i in the i rich corner)


有关含Al、Si和La 3种元素化合物成分的研究报道很多,通常认为微量La在亚共晶Al-Si合金中会形成AlSiLa或Al2Si2La化合物[12,14,25~28],但就三元化合物的具体成分,观点尚不统一。因此,本工作分别理论计算了这2种化合物的形成热及其与Al熔体间的界面能,结果如表2所示。可见,0 K下AlSiLa的形成热约为-66.1 kJ/mol,其绝对值远大于Al2Si2La的形成热(-40.3 kJ/mol)的绝对值;而850 K时AlSiLa与Al熔体的界面能极低(≈ 0),小于Al2Si2La与Al熔体的界面能(0.021 J/m2)。形成热及界面能数据均表明微量La在Al-Si合金熔体中最易形成AlSiLa,这与前期的研究结果[12,14]一致。

表2   0 K下Al m Si m La的形成热(ΔfHAlmSimLa)和850 K时Al熔体与Al m Si m La间的界面能(σAl/AlmSmLa)

Table 2  Heat for the formation of Al m Si m La (ΔfHAlmSimLa) at 0 K and interfacial energy between the melt and Al m Si m La compound (σAl/AlmSmLa) at 850 K

mΔfHAlmSimLa / (kJ·mol-1)σAl/AlmSmLa / (J·m-2)
1-66.10
2-40.30.021

新窗口打开| 下载CSV


xLa0小于SLaα-Al时,无AlSiLa三元化合物生成,La分布在α-Al和共晶Si中,基于 式(13)和(14)可计算得到共晶Si中La浓度xLaSixLa0的变化关系,见图3。可见,xLaSixLa0的增加而增加,变质效果随之增加;当xLa0大于SLaα-Al时,La在稳态生长的α-Al中的浓度为SLaα-Al,不再随xLa0的变化而变化,而高出xLaα-Al的La在α-Al/熔体界面处会形成AlSiLa三元化合物,此时,xLaSi亦不随xLa0的变化而变化,La对共晶Si的变质效果基本不变,这与前期研究结果[12,14]一致。

图3

图3   不同La添加量下Al-6Si合金中共晶Si内La的浓度(xLaSi)随La初始浓度(xLa0)的变化

Fig.3   Dependences of the La concentration in eutectic Si (xLaSi) on the La initial concentration (xLa0) in Al-6Si alloy melt


上述分析亦可用于判定其他微量元素对Si的变质效果。微量元素在α-Al中的最大固溶度及与Al、Si的相互作用参数共同决定变质效果。当微量元素与Al、Si的相互作用参数相近时,其在α-Al中的最大固溶度越小,变质效果越强;当微量元素在α-Al中的最大固溶度相近时,其与Al、Si的相互作用参数越小,越不易形成三元化合物,变质效果越强;当变质元素的添加量接近其在α-Al中最大固溶度时,变质效果最佳。

3 结论

(1) 当La的添加量低于其在α-Al中最大固溶度时,La分布在α-Al和共晶Si中,变质效果随着La添加量的增加而增加。

(2) 当La的添加量大于其在α-Al中最大固溶度时,由于La与Al、Si的相互作用参数较大且2者相近,会形成含Al、Si、La的三元化合物,在各种可能的Al、Si、La化合物中,AlSiLa的形成热较大,且与Al熔体间的界面能较低,最易在熔体中形成,此时,La分布在α-Al、AlSiLa和共晶Si中且其在α-Al和共晶Si中的浓度基本不随添加量的增加而变化,变质效果基本保持不变。

(3) 变质元素影响共晶Si变质效果的关键因素是共晶Si中变质元素的浓度,这主要取决于变质元素在α-Al中的最大固溶度、变质元素与Al、Si的相互作用参数及可能形成化合物的形成热、化合物与熔体间的界面能;当变质元素的添加量接近其在α-Al中的最大固溶度时,变质效果最佳。

参考文献

Liu X R, Zhang Y D, Beausir B, et al.

Twin-controlled growth of eutectic Si in unmodified and Sr-modified Al-12.7%Si alloys investigated by SEM/EBSD

[J]. Acta Mater., 2015, 97: 338

DOI      URL     [本文引用: 1]

Tsai Y C, Chou C Y, Lee S L, et al.

Effect of trace La addition on the microstructures and mechanical properties of A356 (Al-7Si-0.35Mg) aluminum alloys

[J]. J. Alloys Compd., 2009, 487: 157

DOI      URL    

Jiang W M, Fan Z T, Dai Y C, et al.

Effects of rare earth elements addition on microstructures, tensile properties and fractography of A357 alloy

[J]. Mater. Sci. Eng., 2014, A597: 237

Jung J G, Ahn T Y, Cho Y H, et al.

Synergistic effect of ultrasonic melt treatment and fast cooling on the refinement of primary Si in a hypereutectic Al-Si alloy

[J]. Acta Mater., 2018, 144: 31

DOI      URL     [本文引用: 1]

Makhlouf M M, Guthy H V.

The aluminum-silicon eutectic reaction: Mechanisms and crystallography

[J]. J. Light Met., 2001, 1: 199

DOI      URL     [本文引用: 1]

Nogita K, McDonald S D, Dahle A K.

Eutectic modification of Al-Si alloys with rare earth metals

[J]. Mater. Trans., 2004, 45: 323

DOI      URL    

Pourbahari B, Emamy M.

Effects of La intermetallics on the structure and tensile properties of thin section gravity die-cast A357 Al alloy

[J]. Mater. Des., 2016, 94: 111

DOI      URL     [本文引用: 1]

Li B.

Modification evolution of eutectic silicon in AlSi7Mg alloy and micro-mechanism

[D]. Harbin: Harbin Institute of Technology, 2011

[本文引用: 1]

李 豹.

AlSi7Mg合金共晶硅变质规律及其微观机制

[D]. 哈尔滨: 哈尔滨工业大学, 2011

[本文引用: 1]

Dong G M, Sun G X, Liao H C.

Modification of eutectic silicon in Al-Si cast alloys

[J]. Foundry, 2005, 54: 1

[本文引用: 1]

董光明, 孙国雄, 廖恒成.

共晶硅的变质

[J]. 铸造, 2005, 54: 1

[本文引用: 1]

Pan F S.

Current status and prospects of rare earth aluminum alloy

[J]. Mater. Rep., 1990, (1): 21

[本文引用: 1]

潘复生.

我国稀土铝合金的现状和展望

[J]. 材料导报, 1990, (1): 21

[本文引用: 1]

Jiang H X, Li S X, Zheng Q J, et al.

Effect of minor lanthanum on the microstructures, tensile and electrical properties of Al-Fe alloys

[J]. Mater. Des., 2020, 195: 108991

DOI      URL     [本文引用: 1]

Zhang L L, Zheng Q J, Jiang H X, et al.

Effect of La addition on microstructure evolution of hypoeutectic Al-6Si alloys

[J]. J. Mater. Sci., 2020, 55: 7546

DOI      [本文引用: 4]

Jiang H X, Li S X, Zhang L L, et al.

The influence of rare earth element lanthanum on the microstructures and properties of as-cast 8176 (Al-0.5Fe) aluminum alloy

[J]. J. Alloys Compd., 2021, 859: 157804

DOI      URL    

Zheng Q J, Zhang L L, Jiang H X, et al.

Effect mechanisms of micro-alloying element La on microstructure and mechanical properties of hypoeutectic Al-Si alloys

[J]. J. Mater. Sci. Technol., 2020, 47: 142

DOI      [本文引用: 4]

The rare earth influence on the as-cast microstructures and mechanical properties of aluminum alloys attracted great attentions in the last decades. But up to date no reports can be found on the effect of micro-alloying element La (La addition is below 0.1 wt.%) on the solidification of hypoeutectic Al-Si alloys. This study carried out solidification experiments with Al-6Si alloys micro-alloyed by element La. The α-Al grain refinement, the eutectic Si modification and the tensile properties improvement caused by micro-alloying element La were investigated. The effect mechanisms of La were discussed. It is demonstrated that the addition of La as low as 100 ppm can deprave the more effective heterogeneous nucleation conditions for the eutectic Si caused by the impurity P. The addition of 0.06 wt.% La is sufficient to achieve an ideal α-Al grain refinement, eutectic Si modification and ductility improvement of the alloys. LaAlSi phase forms in the Al-Si alloy with the additive amount of La higher than 0.06 wt.%. It has a tetragonal structure. Micro-alloying element La refines the α-Al grains by working as a surfactant and modifies the eutectic Si by promoting the formation of the significant multiple Si twins.

Zheng Q J, Ye Z F, Jiang H X, et al.

Effect of micro-alloying element La on solidification microstructure and mechanical properties of hypoeutectic Al-Si alloys

[J]. Acta Metall. Sin., 2021, 57: 103

DOI      [本文引用: 1]

Hypoeutectic Al-Si alloys are extensively used in the welding industry owing to their excellent cast-ability, low coefficient of thermal expansion, and good weldability. Unfortunately, Al-Si alloys solidify under conventional cooling conditions, forming coarse dendritic α-Al grains with an eutectic structure and a flake-like morphology that has poor mechanical properties. Chemical inoculations are often used to control the size of α-Al grains and the morphology of the eutectic Si particles. The grain refiner Al-Ti-B master alloy and eutectic Si modifier Sr are commonly used in industry. In recent years, great attention has been paid to controlling the microstructure and mechanical properties of hypoeutectic Al-Si alloys through the use of the cost-effective rare earth element La. Previous studies have mainly focused on the effects of La addition on the microstructural evolution and improvements of the mechanical properties. However, to date there have been no studies on the effects of combined addition of La, Al-Ti-B master alloy and Sr on the microstructure and mechanical properties of Al-Si alloys. In this work, solidification experiments were performed to investigate the effects of the micro-alloying element La, Al-Ti-B master alloy, and Sr on the solidification microstructure and mechanical properties of hypoeutectic Al-Si alloys. These results show that synergistic effects are achieved by combinations of La, Al-Ti-B master alloy, and Sr. An addition of 0.06%La was sufficient for effective α-Al grain refinement, eutectic Si particle modification, and improved the ductility of the alloys. Excess La addition formed a coarse LaAlSi intermetallic compound, which deteriorated the ductility of the alloy. The micro-alloying element La refined the α-Al grains by acting as a surfactant that decreased the wetting angle between the TiB2 nucleation substrate and the α-Al nucleus. It modified the eutectic Si particles by promoting the formation of the multiple Si twins and changing the growth behaviors of the Si particles.

郑秋菊, 叶中飞, 江鸿翔 .

微合金化元素La对亚共晶Al-Si合金凝固组织与力学性能的影响

[J]. 金属学报, 2021, 57: 103

DOI      [本文引用: 1]

利用DTA、OM、SEM、TEM、EPMA以及拉伸实验等方法研究了在添加α-Al晶粒细化剂Al-Ti-B中间合金和共晶Si变质剂Sr条件下,微合金化元素La对亚共晶Al-Si合金凝固组织与力学性能的影响。结果表明:添加微量稀土La能进一步细化α-Al,变质共晶Si,显著提高合金的塑性。分析表明:微量La能降低α-Al晶核与TiB<sub>2</sub>的润湿角,减小α-Al的形核过冷度,促进α-Al的进一步细化;La能诱发交错孪晶的形成,增大共晶Si的孪晶密度,改变Si相的长大行为,进一步改变共晶Si的形貌。当La的添加量达到0.10%时,LaAlSi金属间化合物在凝固过程的共晶反应阶段形成,该化合物的形成将降低合金的塑性。

StJohn D H, Qian M, Easton M A, et al.

The interdependence theory: The relationship between grain formation and nucleant selection

[J]. Acta Mater., 2011, 59: 4907

DOI      URL     [本文引用: 2]

Balluffi R W, Allen S M, Carter W C. Kinetics of Materials [M]. Hoboken: Wiley-Interscience, 2005: 543

[本文引用: 1]

Fan T X, Yang G, Zhang D.

Thermodynamic effect of alloying addition on in-situ reinforced TiB2/Al composites

[J]. Metall. Mater. Trans., 2005, 36A: 225

[本文引用: 1]

Zhang L L, Zheng Q J, Jiang H X, et al.

Interfacial energy between Al melt and TiB2 particles and efficiency of TiB2 particles to nucleate α-Al

[J]. Scr. Mater., 2019, 160: 25

DOI      URL     [本文引用: 1]

Niessen A K, de Boer F R, Boom R, et al.

Model predictions for the enthalpy of formation of transition metal alloys II

[J]. Calphad, 1983, 7: 51

DOI      URL     [本文引用: 3]

Miedema A R, de Châtel P F, de Boer F R.

Cohesion in alloys—Fundamentals of a semi-empirical model

[J]. Physica B + C, 1980, 100: 1

DOI      URL     [本文引用: 3]

Ji Z W, Hu C H, Wang D H, et al.

Mechanical properties and chemical bonding of the Os-B system: A first-principles study

[J]. Acta Mater., 2012, 60: 4208

DOI      URL     [本文引用: 1]

Kaptay G.

Modelling interfacial energies in metallic systems

[J]. Mater. Sci. Forum, 2005, 473-474: 1

DOI      URL     [本文引用: 1]

Dinsdale A T.

SGTE data for pure elements

[J]. Calphad, 1991, 15: 317

DOI      URL     [本文引用: 1]

Hosseinifar M, Malakhov D V.

The sequence of intermetallics formation during the solidification of an Al-Mg-Si alloy containing La

[J]. Metall. Mater. Trans., 2011, 42A: 825

[本文引用: 1]

Wang T M, Zhao Y F, Chen Z N, et al.

Combining effects of TiB2 and La on the aging behavior of A356 alloy

[J]. Mater. Sci. Eng., 2015, A644: 425

Alkahtani S A, Elgallad E M, Tash M M, et al.

Effect of rare Earth metals on the microstructure of Al-Si based alloys

[J]. Materials, 2016, 9: 45

DOI      URL    

Elgallad E M, Ibrahim M F, Doty H W, et al.

Microstructural characterisation of Al-Si cast alloys containing rare earth additions

[J]. Philos. Mag., 2018, 98: 1337

DOI      URL     [本文引用: 1]

/