Please wait a minute...
Acta Metall Sin  2025, Vol. 61 Issue (9): 1335-1343    DOI: 10.11900/0412.1961.2024.00012
Research paper Current Issue | Archive | Adv Search |
Kinetic Study of Interaction Between Aluminum Deoxidized Steel and CaO-MgO-Al2O3 Refining Slag
WANG Bochen1, REN Ying1(), KUANG Shuang2, SHAN Qinglin2, PAN Hongwei2, LU Boxun2, SHI Xiaowei2, WANG Jujin3, ZHANG Lifeng3()
1 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Tangshan Iron and Steel Group Co. Ltd., Tangshan 063000, China
3 School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China
Cite this article: 

WANG Bochen, REN Ying, KUANG Shuang, SHAN Qinglin, PAN Hongwei, LU Boxun, SHI Xiaowei, WANG Jujin, ZHANG Lifeng. Kinetic Study of Interaction Between Aluminum Deoxidized Steel and CaO-MgO-Al2O3 Refining Slag. Acta Metall Sin, 2025, 61(9): 1335-1343.

Download:  HTML  PDF(1912KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This research introduces a coupled dynamic model, which involves refining slag, molten steel, inclusions, and refractory materials, to explore the modification effects of CaO-MgO-Al2O3 refining slag on Al2O3 inclusions within steel. The study examines the impact of varying aluminum contents in steel and CaO / Al2O3 ratios in slag on inclusion modification. Notably, the Ca content in both steel and inclusions exhibits a positive correlation with the Al content in steel and the CaO / Al2O3 ratio in the slag. An increase in the Al content in steel from 0.01% to 0.75% led to a rise in the Ca content in the molten steel from 0.07 × 10-6 to 1.47 × 10-6, accompanied by an increase in the CaO content in inclusions from 0.44% to 7.89%. Additionally, elevating the CaO / Al2O3 ratio in the slag from 1.0 to 2.2 enhanced the Ca content in the molten steel from 0.15 × 10-6 to 0.50 × 10-6 and increased the CaO content in inclusions from 0.88% to 2.95%. When the Al content in the steel reached 0.8% and the CaO / Al2O3 ratio in the slag stood at 2.2, the total Ca content in the steel escalated to 2.52 × 10-6, while the CaO content in inclusions surged to 10.96%. These results affirm that CaO-MgO-Al2O3 refining slag is capable of effectively transforming Al2O3 inclusions into CaO-Al2O3 inclusions, with the modification extent predominantly influenced by the Al content in the steel.

Key words:  slag-steel reaction      aluminum-killed steel      inclusion      kinetic model     
Received:  17 January 2024     
ZTFLH:  TF407  
Fund: National Key Research and Development Program of China(2023YFB3709900);National Nature Science Foundation of China(U22A20171);Hesteel Group Key Science and Technology Projects(HG-2022103)
Corresponding Authors:  ZHANG Lifeng, professor, Tel: 13911868419, E-mail: zhanglifeng@ncut.edu.cn;
REN Ying, professor, Tel: 13811903700, E-mail: yingren@ustb.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2024.00012     OR     https://www.ams.org.cn/EN/Y2025/V61/I9/1335

Fig.1  Schematic of the kinetic model of refining slag-molten steel-inclusion-refractory reactions ([%M]—concentration of element M in the steel melt; [%M]s/i/r*—concentration of element M at the interface between steel and slag/inclusion/refractory material; (%MxOy)s/i—content of constituent MxOy in the slag/inclusion; (%MxOy)s/r*—content of constituent MxOy at the interface between steel and slag/refractory)
ElementMgAlOCa
Mg0-0.12-4600
Al-0.1380.5 / T3.21 - 9720 / T-0.047
O-3001.96 - 5750 / T0.76 - 1750 / T-515
Ca0-0.072-12930
Table 1  First-order interaction coefficients[40,41]
CompoundΔGθ=a+bT
ab
3CaO·Al2O3-21757-29.288
12CaO·7 Al2O3617977-612.119
CaO·Al2O359413-59.413
CaO·2Al2O3-16736-25.522
CaO·6Al2O3-22954-31.798
MgO·Al2O3-18828-6.276
Table 2  Components in CaO-MgO-Al2O3 slag system and corresponding standard Gibbs free energies (ΔGθ)[43]
Fig.2  Schematic of the kinetic model calculation process (t—time, tend—calculated end time)
Fig.3  Comparisons of total oxygen content (T.O) (a), total magnesium content (T.Mg) (b), total calcium content (T.Ca) (c), and inclusion content (d) in molten steel between calculated and experimental[19] results
Fig.4  Variations of T.Mg in molten steel (a), T.Ca in molten steel (b), MgO content in inclusion (c), and CaO content in inclusion (d) under different Al contents in steel ([%Al] represents mass fraction of Al)
Fig.5  Variations of T.Ca in molten steel (a) and CaO content in inclusion (b) under different CaO / Al2O3 ratios in slag
Fig.6  Influences of Al content in steel and CaO / Al2O3 ratio in slag on the final compositions of steel and inclusions
(a) T.Ca in the molten steel
(b) CaO content in inclusion
(c) activity of dissolved oxygen (αO) in the molten steel
[1] Zhang L F, Thomas B G. State of the art in evaluation and control of steel cleanliness [J]. ISIJ Int., 2003, 43: 271
[2] Zhang L F, Thomas B G. State of the art in the control of inclusions during steel ingot casting [J]. Metall. Mater. Trans., 2006, 37B: 733
[3] Wang C, Tang W, Zhang J S, et al. Effect of low basicity refining slag on evolution and removal of oxide inclusions in 55SiCrA spring steel [J]. J. Iron Steel Res. Int., 2023, 30: 1755
doi: 10.1007/s42243-023-00941-5
[4] Yan Z H, Zhao Q, Han C Z, et al. Effects of iron oxide on crystallization behavior and spatial distribution of spinel in stainless steel slag [J]. Int. J. Miner. Metall. Mater., 2024, 31: 292
[5] Park J H, Todoroki H. Control of MgO·Al2O3 spinel inclusions in stainless steels [J]. ISIJ Int., 2010, 50: 1333
[6] Wang K P, Wang Y, Xie W, et al. Influence of RH vacuum treatment on spinel inclusions of high carbon chromium bearing steel [J]. Iron Steel, 2023, 58(1): 108
王昆鹏, 王 郢, 谢 伟 等. RH真空处理对高碳铬轴承钢尖晶石夹杂物的影响 [J]. 钢铁, 2023, 58(1): 108
doi: 10.13228/j.boyuan.issn0449-749x.20220371
[7] Zhang J B, Xu J F, Wang K P, et al. Formation mechanism of MgO·Al2O3 inclusions in GCr15 steel in continuous casting [J]. Iron Steel, 2023, 58(5): 83
张建斌, 徐建飞, 王昆鹏 等. GCr15轴承钢连铸过程MgO·Al2O3夹杂物形成机理 [J]. 钢铁, 2023, 58(5): 83
doi: 10.13228/j.boyuan.issn0449-749x.20220703
[8] Ren Y, Liu C Y, Gao X, et al. Dissolution behavior of Mg and Ca from dolomite refractory into Al-killed molten steel [J]. ISIJ Int., 2021, 61: 2391
[9] Yang G, Yang W, Zhang L F. Calcium treatment modification and influencing factors of inclusions in aluminum-killed steel [J]. Iron Steel, 2022, 57(12): 66
杨 光, 杨 文, 张立峰. 铝镇静钢中夹杂物钙处理改性及其影响因素 [J]. 钢铁, 2022, 57(12): 66
[10] Wang Z L, Bao Y P, Gu C, et al. Key metallurgical technology for high-quality bearing steel production based on the nonaluminum deoxidation process [J]. Chin. J. Eng., 2022, 44: 1607
王仲亮, 包燕平, 顾 超 等. 基于非铝脱氧工艺的高品质轴承钢关键冶金技术研究 [J]. 工程科学学报, 2022, 44: 1607
[11] Liu N, Cheng G, Ren Y, et al. Effect of calcium in ferrosilicon alloys on inclusions in Al-killed steel [J]. Chin. J. Eng., 2022, 44: 2069
刘 南, 成 功, 任 英 等. 硅铁合金中金属钙元素对铝脱氧钢中夹杂物的影响 [J]. 工程科学学报, 2022, 44: 2069
[12] Wang Z L, Bao Y P. Development and prospects of molten steel deoxidation in steelmaking process [J]. Int. J. Miner. Metall. Mater., 2024, 31: 18
[13] Harada A, Maruoka N, Shibata H, et al. Kinetic analysis of compositional changes in inclusions during ladle refining [J]. ISIJ Int., 2014, 54: 2569
[14] Zhao X J, Zhang J Y, Li C J. Analysis of formation mechanism about Ca-Mg-Al spinel-type inclusions in cold thin rolling sheet [J]. J. Iron Steel Res., 2022, 34: 664
赵显久, 张捷宇, 李传军. 冷轧薄板钙镁铝尖晶石类夹杂物成因分析 [J]. 钢铁研究学报, 2022, 34: 664
doi: 10.3228/j.boyuan.issn1001-963.0210182
[15] Zu L, Yang J, Kong L Z, et al. Research status of reaction between ladle refractories and molten steel [J]. J. Iron Steel Res., 2022, 34: 12
doi: 10.13228/j.boyuan.issn1001-0963.20210230
祖 琳, 杨 杰, 孔令种 等. 钢包耐火材料与钢液反应的研究现状 [J]. 钢铁研究学报, 2022, 34: 12
[16] Liu C S, Hou S W, Liu X Q, et al. Optimization of refining slag for 30Cr1Mo1V steam turbine rotor steel [J]. J. Iron Steel Res., 2022, 34: 1098
doi: 10.13228/j.boyuan.issn1001-0963.20210352
刘成松, 侯松威, 刘晓芹 等. 30Cr1Mo1V汽轮机转子钢的精炼渣优化 [J]. 钢铁研究学报, 2022, 34: 1098
doi: 10.13228/j.boyuan.issn1001-0963.20210352
[17] Zheng D L, Ma G J, Zhang X, et al. Evolution of MnS and MgO·Al2O3 inclusions in AISI M35 steel during electroslag remelting [J]. J. Iron Steel Res. Int., 2021, 28: 1605
[18] Peng Y B, Liu C S, Yang L, et al. Improving cleanliness of 30Cr2Ni4MoV low-pressure rotor steel by CaO-SiO2-MgO-Al2O3 slag refining [J]. J. Iron Steel Res. Int., 2022, 29: 1434
[19] Liu C Y, Gao X, Ueda S, et al. Change in composition of inclusions through the reaction between Al-killed steel and the slag of CaO and MgO saturation [J]. ISIJ Int., 2019, 59: 268
[20] Mu H Y, Zhang T S, Fruehan R J, et al. Reduction of CaO and MgO slag components by Al in liquid Fe [J]. Metall. Mater. Trans., 2018, 49B: 1665
[21] Yu H X, Yang D X, Zhang J M, et al. Effect of Al content on the reaction between Fe-10Mn-xAl (x = 0.035wt%, 0.5wt%, 1wt%, and 2wt%) steel and CaO-SiO2-Al2O3-MgO slag [J]. Int. J. Miner. Metall. Mater., 2022, 29: 256
[22] Okuyama G, Yamaguchi K, Takeuchi S, et al. Effect of slag composition on the kinetics of formation of Al2O3-MgO inclusions in aluminum killed ferritic stainless steel [J]. ISIJ Int., 2000, 40: 121
[23] Harada A, Matsui A, Nabeshima S. Composition change of inclusions in high carbon steel before and after addition of aluminum [J]. ISIJ Int., 2021, 61: 715
[24] Kim J I, Kim S J. Evolution of Mg-Al-based inclusions with changes in Mg content during ladle treatment based on a coupled reaction model [J]. ISIJ Int., 2020, 60: 691
[25] Ji Y Q, Liu C Y, Lu Y, et al. Effects of FeO and CaO/Al2O3 ratio in slag on the cleanliness of Al-killed steel [J]. Metall. Mater. Trans., 2018, 49B: 3127
[26] Zhang Y, Ren Y, Zhang L F. Kinetic study on compositional variations of inclusions, steel and slag during refining process [J]. Metall. Res. Technol., 2018, 115: 415
[27] Cheng G. Calcium aluminate inclusions in GCr15 bearing steel [D]. Beijing: University of Science and Technology Beijing, 2021: 74
成 功. GCr15轴承钢中钙铝酸盐类夹杂物 [D]. 北京: 北京科技大学, 2021: 74
[28] Liu C Y, Jia Y, Hao L X, et al. Effects of slag composition and impurities of alloys on the inclusion transformation during industrial ladle furnace refining [J]. Metals, 2021, 11: 763
[29] Liu C Y, Huang F X, Wang X H. The effect of refining slag and refractory on inclusion transformation in extra low oxygen steels [J]. Metall. Mater. Trans., 2016, 47B: 999
[30] Liu C Y, Huang F X, Suo J L, et al. Effect of magnesia-carbon refractory on the kinetics of MgO·Al2O3 spinel inclusion generation in extra-low oxygen steels [J]. Metall. Mater. Trans., 2016, 47B: 989
[31] Kumar D, Pistorius P C. Calcium transfer to oxide inclusions in Al-killed steel without calcium treatment [J]. Metall. Mater. Trans., 2021, 52B: 163
[32] Gao F B, Wang F M, Zhang X, et al. Effect of Al content in molten steel on interaction between MgO-C refractory and SPHC steel [J]. J. Iron Steel Res. Int., 2024, 31: 838
[33] Wang J J, Zhang L F, Wen T J, et al. Kinetic prediction for the composition of inclusions in the molten steel during the electroslag remelting [J]. Metall. Mater. Trans., 2021, 52B: 1521
[34] Wang J J, Zhang L F, Cheng G, et al. Dynamic mass variation and multiphase interaction among steel, slag, lining refractory and nonmetallic inclusions: Laboratory experiments and mathematical prediction [J]. Int. J. Miner. Metall. Mater., 2021, 28: 1298
[35] Harada A, Maruoka N, Shibata H, et al. A kinetic model to predict the compositions of metal, slag and inclusions during ladle refining: Part 2. Condition to control the inclusion composition [J]. ISIJ Int., 2013, 53: 2118
[36] Harada A, Maruoka N, Shibata H, et al. A kinetic model to predict the compositions of metal, slag and inclusions during ladle refining: Part 1. Basic concept and application [J]. ISIJ Int., 2013, 53: 2110
[37] Zhang Y X, Zhang L F, Wang J J, et al. Concepts and characteristic curves for the kinetic transformation of nonmetallic inclusions in liquid steel during solidification and cooling and in solid steel during heating process [J]. Chin. J. Eng., 2023, 45: 369
张月鑫, 张立峰, 王举金 等. 钢液凝固与冷却过程及固体钢加热过程钢中非金属夹杂物成分动力学转变的几个概念和特征曲线 [J]. 工程科学学报, 2023, 45: 369
[38] Shin J H, Park J H. Modification of inclusions in molten steel by Mg-Ca transfer from top slag: Experimental confirmation of the ‘refractory-slag-metal-inclusion (ReSMI)’ multiphase reaction model [J]. Metall. Mater. Trans., 2017, 48B: 2820
[39] Shin J H, Chung Y, Park J H. Refractory-slag-metal-inclusion multiphase reactions modeling using computational thermodynamics: Kinetic model for prediction of inclusion evolution in molten steel [J]. Metall. Mater. Trans., 2017, 48B: 46
[40] Itoh H, Hino M, Ban-Ya S. Thermodynamics on the formation of spinel nonmetallic inclusion in liquid steel [J]. Metall. Mater. Trans., 1997, 28B: 953
[41] Hino M, Ito K. Thermodynamic Data for Steelmaking [M]. Korea: Tohoku University Press, 2010: 260
[42] Huang F X, Zhang L F, Zhang Y, et al. Kinetic modeling for the dissolution of MgO lining refractory in Al-killed steels [J]. Metall. Mater. Trans., 2017, 48B: 2195
[43] Yang X M, Shi C B, Zhang M, et al. A thermodynamic model of sulfur distribution ratio between CaO-SiO2-MgO-FeO-MnO-Al2O3 slags and molten steel during LF refining process based on the ion and molecule coexistence theory [J]. Metall. Mater. Trans., 2011, 42B: 1150
[44] Ni P Y, Tanaka T, Suzuki M, et al. A kinetic model of mass transfer and chemical reactions at a steel/slag interface under effect of interfacial tensions [J]. ISIJ Int., 2019, 59: 737
[45] Danckwerts P V. Kinetics of the absorption of carbon dioxide in water [J]. Research, 1949, 2: 494
[46] Hou D, Jiang Z H, Dong Y W, et al. Effect of slag composition on the oxidation kinetics of alloying elements during electroslag remelting of stainless steel: Part-1 Mass-transfer model [J]. ISIJ Int., 2017, 57: 1400
[47] Wei J H, Mitchell A. Changes in composition during A.C. ESR——I. Theoretical development [J]. Acta Metall. Sin., 1984, 20: B261
魏季和, Mitchell A. 交流电渣重熔过程中的成分变化——Ⅰ.理论传质模型 [J]. 金属学报, 1984, 20: B261
[48] Wang L T, Zhang Q Y, Peng S H, et al. Mathematical model for growth and removal of inclusion in a multi-tuyere ladle during gas-stirring [J]. ISIJ Int., 2005, 45: 331
[1] MENG Ze, LI Guangqiang, LI Tengfei, ZHENG Qing, ZENG Bin, LIU Yu. Effect of Ce on Cleanliness, Microstructure, and Pitting Corrosion Resistance of 75Cr1 Steel[J]. 金属学报, 2024, 60(9): 1229-1238.
[2] CHEN Runnong, LI Zhaodong, CAO Yanguang, ZHANG Qifu, LI Xiaogang. Initial Corrosion Behavior and Local Corrosion Origin of 9%Cr Alloy Steel in ClContaining Environment[J]. 金属学报, 2023, 59(7): 926-938.
[3] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[4] SUN Yangting, LI Yiwei, WU Wenbo, JIANG Yiming, LI Jin. Effect of Inclusions on Pitting Corrosion of C70S6 Non-Quenched and Tempered Steel Doped with Ca and Mg[J]. 金属学报, 2022, 58(7): 895-904.
[5] LIU Jie, XU Le, SHI Chao, YANG Shaopeng, HE Xiaofei, WANG Maoqiu, SHI Jie. Effect of Rare Earth Ce on Sulfide Characteristics and Microstructure in Non-Quenched and Tempered Steel[J]. 金属学报, 2022, 58(3): 365-374.
[6] ZHU Miaoyong, DENG Zhiyin. Evolution and Control of Non-Metallic Inclusions in Steel During Secondary Refining Process[J]. 金属学报, 2022, 58(1): 28-44.
[7] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[8] ZHOU Hongwei, BAI Fengmei, YANG Lei, CHEN Yan, FANG Junfei, ZHANG Liqiang, YI Hailong, HE Yizhu. Low-Cycle Fatigue Behavior of 1100 MPa Grade High-Strength Steel[J]. 金属学报, 2020, 56(7): 937-948.
[9] SUN Feilong, GENG Ke, YU Feng, LUO Haiwen. Relationship of Inclusions and Rolling Contact Fatigue Life for Ultra-Clean Bearing Steel[J]. 金属学报, 2020, 56(5): 693-703.
[10] ZHANG Xinfang, YAN Longge. Regulating the Non-Metallic Inclusions by Pulsed Electric Current in Molten Metal[J]. 金属学报, 2020, 56(3): 257-277.
[11] Tongbang AN,Jinshan WEI,Jiguo SHAN,Zhiling TIAN. Influence of Shielding Gas Composition on Microstructure Characteristics of 1000 MPa Grade Deposited Metals[J]. 金属学报, 2019, 55(5): 575-584.
[12] FENG Yefei,ZHOU Xiaoming,ZOU Jinwen,WANG Chaoyuan,TIAN Gaofeng,SONG Xiaojun,ZENG Weihu. Interface Reaction Mechanism Between SiO2 and Matrix and Its Effect on the Deformation Behavior of Inclusionsin Powder Metallurgy Superalloy[J]. 金属学报, 2019, 55(11): 1437-1447.
[13] Yu HUANG, Guoguang CHENG, You XIE. Modification Mechanism of Cerium on the Inclusions in Drill Steel[J]. 金属学报, 2018, 54(9): 1253-1261.
[14] Ge MA, Xiurong ZUO, Liang HONG, Yinglun JI, Junyuan DONG, Huihui WANG. Investigation of Corrosion Behavior of Welded Joint of X70 Pipeline Steel for Deep Sea[J]. 金属学报, 2018, 54(4): 527-536.
[15] Wen YANG,Lifeng ZHANG,Ying REN,Haojian DUAN,Ying ZHANG,Xianghui XIAO. QUANTITATIVE 3D CHARACTERIZATION ON OXIDE INCLUSIONS IN SLAB OF Ti BEARING FERRITIC STAINLESS STEEL USING HIGH RESOLUTION SYNCHROTRON MICRO-CT[J]. 金属学报, 2016, 52(2): 217-223.
No Suggested Reading articles found!