Please wait a minute...
Acta Metall Sin  2016, Vol. 52 Issue (5): 519-528    DOI: 10.11900/0412.1961.2015.00391
Orginal Article Current Issue | Archive | Adv Search |
FORMATION MECHANISM AND INFLUENCE FACTORS OF SINK VORTEX DURINGLADLE TEEMING
Haiyan TANG1,2(),Yongchang LIANG2
1 State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China
2 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Haiyan TANG,Yongchang LIANG. FORMATION MECHANISM AND INFLUENCE FACTORS OF SINK VORTEX DURINGLADLE TEEMING. Acta Metall Sin, 2016, 52(5): 519-528.

Download:  HTML  PDF(994KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To investigate the formation mechanism of sink vortex during ladle teeming, the effects of some factors such as Coriolis force, the position of the ladle shroud and initial tangential velocity of the fluid on the vortex formation process have been studied using numerical simulation combined with experiments. In addition, the evolution tendencies of tangential and radial velocities of the fluid over radial position were studied at certain initial tangential velocity. The results show that as for fully settled fluid, Coriolis force is the major reason for sink vortex formation and the spinor near the shroud is the initial driving force. There is no obvious effect of the ladle shroud position on the critical height of vortex for fully settled fluid, while the critical height of vortex significantly decreases with increasing shroud eccentricity for the fluid with a certain initial velocity, and the tangential motion is the main driving force for vortex formation in this case. The initial tangential velocity affects the critical height significantly. The larger the initial angular velocity is, the earlier vortex occurs and the bigger the critical height of vortex is. As a result, keeping the fluid settled for some time is an effective measure to delay vortex during ladle teeming. The relationship between the start height of vortex (HSS) and initial angular velocity (ω) can be expressed as HSS=0.11+2.85ω-4.04ω2+1.95ω3, and that of the height of air column extending to shroud (HCS) and ω expressed as HCS=0.09+1.49ω-0.79ω2, both of the fitting degrees are higher than 0.99.

Key words:  sink vortex      ladle teeming      critical height      Coriolis force      tangential velocity      radial velocity      VOF model     
Received:  16 July 2015     
Fund: Supported by National Natural Science Foundation of China (No.51374021), Fundamental Research Funds for the Central Universities (No.06102110) and Research and Development Funds of State Key Laboratory of Advanced Metallurgy (No.41603014)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2015.00391     OR     https://www.ams.org.cn/EN/Y2016/V52/I5/519

Fig.1  Schematic of meshing division of ladle model
Fig.2  Schematic of experimental set-up
Fig.3  Schematics of sink vortex at different stages during ladle teeming (HSS—vortex starting height, HCS—height of air column penetrating shroud, HDS— height of strong air entrapment occurring)
Fig.4  Comparison of the critical heights of strong air-entrapment vortexes between the simulated and experimental results with different diameters of shroud
Fig.5  Comparisons of the critical heights of vortexes without (a) and with (b) Coriolis force
Fig.6  Diagrams of velocity vectors without (a) and with (b) Coriolis force at cross-section of 80.0 mm when liquid level reaching 82.0 mm
Fig.7  Diagrams of velocity vectors without (a) and with (b) Coriolis force at cross-sections of different heights when liquid level reaching 350.0 mm
Fig.8  Effects of eccentricity on the critical heights of vortexes at initial tangential velocity ω=0 rad/s (a) and 0.2 rad/s (b)
Fig.9  Effects of the initial tangential velocity (ω) on critical height of vortex at absolute height (a) and non-dimensional height (b)
Fig.10  Tangential velocity distributions along radial positions at different liquid levels and ω=0 rad/s (a), 0.2 rad/s (b), 0.4 rad/s (c), 0.6 rad/s (d), 0.8 rad/s (e) and 1.0 rad/s (f)
Fig.11  Radial velocity distribution along radial position when the liquid surface decreasing to different heights with ω=0 and 0.2 rad/s (Initial level is 400.0 mm. Negative values represent fluid flowing to center while positive ones off center)
[1] Huang Y, Ye S F, Tao Y P, Li M M, Huang Z M.J Iron Steel Res, 1995; 7(6): 9
[1] (黄晔, 叶树峰, 陶玉平, 李美明, 黄泽民. 钢铁研究学报, 1995; 7(6) : 9)
[2] Lin R, Yan Z G, Yu J K. J Northeastern Univ (Nat Sci), 2010; 31: 1287
[2] (蔺瑞, 颜正国, 于景坤. 东北大学学报(自然科学版), 2010; 31: 1287)
[3] Zhou L, Cao C H, Dai W, He X.Steelmaking, 2012; 28(2): 56
[3] (周俐, 曹成虎, 戴维, 何西. 炼钢, 2012; 28(2) : 56)
[4] Lin R, Yan Z G, Liu T, Liu J Z, Yu J K.J Mater Metall, 2011; 10: 172
[4] (蔺瑞, 颜正国, 刘涛, 刘家占, 于景坤. 材料与冶金学报, 2011; 10: 172)
[5] Mazzaferro G M, Piva M, Ferro S P, Bissio P, Iglesias M, Calvo A, Goldschmit M B.Ironmaking Steelmaking, 2004; 31: 1
[6] Lin R, Yan Z G, Liu T, Yu J K.Chin J Process Eng, 2010; 10: 655
[6] (蔺瑞, 颜正国, 刘涛, 于景坤. 过程工程学报, 2010; 10: 655)
[7] Huang Y, Ye S F, Su T S, Li M M.Jiangxi Metall, 1999; 19(6) : 1
[7] (黄晔, 叶树峰, 苏天森, 李美明. 江西冶金, 1999; 19(6) : 1)
[8] Davila O, Morales R D, Garcia D L.Metall Mater Trans, 2006; 37B: 71
[9] Jun W S, Joonpyo P, Hoyoung K, Zin H L.ISIJ Int, 2001; 41: 689
[10] Sankaranarayanan R, Grthrie R I L.Ironmaking Steelmaking, 2002; 29: 147
[11] Kojola N, Takagi S, Yokoya S, Jonsson P.ISIJ Int, 2009; 49: 1
[12] Rodolfo D M, Omar D M, Ismael C, Ken M H.ISIJ Int, 2013; 53: 782
[13] Wang J, Zhou S X, Chen W Z, Zhang S L.Foundry Technol, 2012; 33: 1194
[13] (王建, 周少雄, 陈文智, 张淑兰. 铸造技术, 2012; 33: 1194)
[14] Koria S C, Kanth U.Steel Res, 1994; 5: 1
[15] Sucker D, Reinecke J.In Ironmaking Conference eds., Proc 5th Int Iron and Steel Congress, Washington: Iron and Steel Society of the American Institute of Mining, Metallurgical and Petroleum Engineers (AIME), 1986: 331
[16] Piva M, Iglesias M, Bissio P, Calvo A.Physica, 2003; 329A: 1
[17] Kuwana K, Hassan M I, Singh P K, Saito K, Nakagawa J.Mater Manuf Processes, 2008; 23: 407
[18] Shi X G. J Hydrodyn, 1992; 7(1)A: 103
[18] (是勋刚. 水动力学研究与进展, 1992; 7(1)A: 103)
[19] Zhang J S, Yang S F, Li J S, Yang W L, Wang Y, Guo X C.ISIJ Int, 2015; 55: 1684
[20] Shih T H, Liou W W, Shabbir A, Yang Z, Zhu J.Comput Fluids, 1995; 24: 227
[21] Tang H Y, Li J S, Ding X M, Tang W D.J Univ Sci Technol Beijing, 2011; 33(suppl.1): 34
[21] (唐海燕, 李京社, 丁小明, 唐文聃, 北京科技大学学报, 2011; 33(增刊1): 34)
[22] Sucker D, Reinecke J, Hage Jewainski H.Stahl Eisen, 1985; 150: 765
[23] Tang H Y, Zhang T B, Li J S, Chen Y F. Mater Processing Fundamentals.Warrendale, Pennsylvania: Miner Met Mater Soc, 2013: 281
[24] Li G Y.Hydrau Technol, 2007; 38: 1409
[24] (李国英. 水力学报, 2007; 38: 1409)
No related articles found!
No Suggested Reading articles found!