|
|
ELASTIC PROPERTIES OF COLD-ROLLED AND ANNEALED SHEETS OF PHOSPHORUS STEEL HAVING HIGH NORMAL PLASTIC ANISOTROPY |
Hsun Hu (U. S. Steel Research Laboratory; Monroeville; Pa 15146; U.S.A.) |
|
Cite this article:
Hsun Hu (U. S. Steel Research Laboratory; Monroeville; Pa 15146; U.S.A.). ELASTIC PROPERTIES OF COLD-ROLLED AND ANNEALED SHEETS OF PHOSPHORUS STEEL HAVING HIGH NORMAL PLASTIC ANISOTROPY. Acta Metall Sin, 1981, 17(6): 595-606.
|
Abstract The elastic properties of as-cold-rolled and of the subsequently annealed sheets of a phosphorus steel having high normal plastic anisotropy and low planar plastic anisotropy have been calculated according to the averaging procedures of Voigt, Reuss, and Hill incorporated with texture-weighting functions. The calculated values of Young's modulus in the various directions lying in the plane of the sheet were compared with those determined experimentally by ultrasonic measurements. Results indicate that the Hill averages are very close to reality, whereas the Voigt and Reuss averages are somewhat too high and too low, respectively, in comparison with experimentally measured values. This paper has been prepared to help familiarize metallurgists, engineers and students with the mathematical treatments that can be used for such studies. The procedures used for the calculations are described in detail, and examples of calculations are proveided in the Appendix.
|
Received: 18 June 1981
|
[1] Hu, H., 待发表. [2] Roe, R. J., J. Appl. Phys,, 36 (1965) , 2024. [3] Roe, R. J., ibid., 37 (1966) , 2069. [4] Bunge, H. J., Z. Metallk., 56 (1965) , 872. [5] Bunge, H. J., Mathematische Methoden der Texturanalyse, Akademie-Verlag, Berlin, 1969. [6] Bunge, H. J., Ebert, R. and Gunther, F., Phys. Status Solidi, 31 (1969) , 565. [7] Kallend, J. S. and Davies, G. J., J. Inst. Met., 98 (1970) , 242. [8] Kallend, J. S. and Davies, G. J., ibid., 99 (1971) , 257. [9] Morris, P. R., Int. J. Eng. Sci., 8 (1970) , 49. [10] Morris, P. R., Metall. Trans., 2 (1971) , 1949. [11] Bunge, H. J. and Roberts, W. T., J. Appl. Cryst., 2 (1969) , 116. [12] Voigt, W., Lehrbuch der Kristallphysik, Teubner Verlag, Leipzig, 1928, p. 739. [13] Reuss, A., Z. Angew. Math. Mech., 9 (1929) , 49. [14] Hill, R., Phys. Soc. Proc. (London), 65 (1952) , 349. [15] Chung, D. H. and Buessem, W. R., J. Appl. Phys., 38 (1967) , 2535. [16] Kroner, E., Z. Phys., 151 (1958) , 504. [17] Bunge, H. J., Krist. Tech., 3 (1968) , 431. [18] Morris, P.R., J. Appl. Phys., 40 (1969) , 447. [19] Nye, J. F., Physical Properties of Crystals, Clarendon Press, Oxford, 1957, p. 135. [20] Mason, W. P., Piezoelectric Crystals and Their Application to Ultrasonics, Van Nostrand, 1950, p. 417. [21] Nye, J. F., Physical Properties of Crystals, Clarendon Press, Oxford, 1957, p. 147. [22] Stickels, C. A. and Mould, P. R., Metall. Trans., 1 (1970) , 1303. [23] Mould, P. R. and Johnson, T. E., Jr., Sheet Met. Ind., 50 (1973) , 328; 348. [24] Alers, G. A. and Liu, Y. C., Trans. Metall. Soc. AIME, 236 (1966) , 482. [25] Liu, Y. C. and Alers, G. A., ibid., 236 (1966) , 489. [26] Zener, C., Elasticity and Anelasticity of Metals, Univ. Chicage Press, 1956, p. 7. |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|