Please wait a minute...
Acta Metall Sin  1982, Vol. 18 Issue (6): 726-734    DOI:
Current Issue | Archive | Adv Search |
FORMULAE FOR MEASURING INTERNAL FRICTION AND MODULUS BY MARX METHOD
Sun Zongqi (Institute of Metal Research; Academia Sinica; Shenyang)
Cite this article: 

Sun Zongqi (Institute of Metal Research; Academia Sinica; Shenyang). FORMULAE FOR MEASURING INTERNAL FRICTION AND MODULUS BY MARX METHOD. Acta Metall Sin, 1982, 18(6): 726-734.

Download:  PDF(624KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Considering the effects of adhesive layers and filaments supporting the composite resonator on the measurement of the internal friction and modulus, the accurate expressions for the internal friction and elastic modulus have been obtained by solving the partial differential equations of the correlative variations of composite resonators. The additional internal friction due to adhesive layer is proportional to the product of square of amplitude of the strain in the layer and the internal friction of adhesive. The internal friction owing to supporting filaments is found to be proportional to the internal frictions of specimen and of quartz resonator.The non-linear and non-steady internal friction backgrounds caused by flowing and cracking of adhesives observed in the internal friction measurement of low damping specimen were explained. It was also suggested some effective approachs to raise the precision of the measurement of internal friction by Marx method.
Received:  18 June 1982     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1982/V18/I6/726

1 孙宗琦,金属学报,18(1982) ,293.
2 Marx, J., Rev. Sci. Instrum., 22(1951) , 503.
3 Beshers, D. N., Techniques of Metals Research, Vol. Ⅶ, Part 2, Ed. Bunshah, R. F., Wiley, New York, 1976, p. 618.
4 Cady, W. G., Piezoelectricity, McGraw-Hill, 1946, p. 88.
5 Minorsky, N., Nonlinear Oscillation, Van Nostrand, New York, 1969, p. 375.
6 Robinson, W. H.; Edgar, A., IEEE Trans. Sonics Ultrason., SU-21(1974) , 98.
7 Robinson, W. H.; Carpenter, S. H.; Tallon, J. L., J. Appl. Phys., 45(1974) , 1975.
8 Robinson, W. H., Philos. Mag., 25(1972) , 355.
9 Huber, R. J.; Baker, G. S.; Girrs, P., J. Appl. Phys., 32(1961) , 2488.
10 Baker, G. S.; Carpenter, S. H., Rev. Sci. Instrum., 36(1965) , 29.
11 Devine, S. D.; Robinson, W. H., J. Appl. Phys, 48(1977) , 1437.
12 Simpson, M.; Finlayson, T. R.; Smith, T. F., J. Phys. D11(1978) , 453.
13 Nowick, A. S.; Berry, B. S., Anelastic Relaxation in Crystalline Solids, Academic Press, 1972, p. 431.
14 Schwarz, R. B., Rev. Sci. Instrum., 48(1977) , 111.
15 Tatento, H.; Tanignchi, H., Jpn. J. Appl. Phys., 19(1980) , 175.
16 Wuttig, M.; Suzuki, T., Acta Metall., 27(1979) , 755.
17 Wuttig, M.; Suzuki, T., Scr. Metall., 14(1980) , 229.
18 Ritchie, I. G.; Atrens, A.; Blair, D. G., Internal Friction and Ultrasonic Attenuation in Solids, Ed. Hasiguti, R. R., Uni. Tokyo Press, 1977, p. 637.
No related articles found!
No Suggested Reading articles found!