Please wait a minute...
金属学报  2006, Vol. 42 Issue (6): 611-618     
  论文 本期目录 | 过刊浏览 |
Al-4%Cu多晶合金中锯齿形屈服现象的初步时序分析
卢俊勇; 蒋震宇;张青川
中国科学技术大学中国科学院材料力学行为和设计重点实验室; 合肥230027
Preliminary Time Series Analysis of Serrated Yielding in Al-4%Cu Alloy
Lu Junyong; Jiang Zhenyu; Zhang Qingchuan
中国科大力学与机械工程系
引用本文:

卢俊勇; 蒋震宇; 张青川 . Al-4%Cu多晶合金中锯齿形屈服现象的初步时序分析[J]. 金属学报, 2006, 42(6): 611-618 .
, , . Preliminary Time Series Analysis of Serrated Yielding in Al-4%Cu Alloy[J]. Acta Metall Sin, 2006, 42(6): 611-618 .

全文: PDF(342 KB)  
摘要: 对Al-4%Cu合金试样拉伸实验的锯齿形应力曲线进行了系统的统计分析, 研究了锯齿应力跌幅、跌落时间以及再加载时间等特征物理量随应变、试样厚度 和加载应变率的时序演化规律. 结果表明, 跌落时间对应变不敏感; 1和2 mm厚 试样的平均应力跌幅和平均再加载时间均随应变线性增加, 3 mm厚试样的统计结 果比较复杂. 展示了PLC效应中自组织临界性存在的证据, 并通过与经典沙堆 模型的对比, 结合动态应变时效原理和位错理论, 解释了PLC变形带形成的非线性机制.
关键词 Al-Cu合金锯齿形屈服效应统计分析    
Abstract:A systematic statistical analysis of the characteristics of the Portevin-Le Chartelier (PLC) effect in Al-4%Cu alloy, including the stress drop amplitude and the reloading time, etc., is carried out. The drop duration is found to be a constant independent of the strain. The average stress drop amplitude and the average reloading time of 1 and 2 mm thick samples increase with strain linearly, while the cases of 3 mm thick samples are much more complicated. The evidence of self--organized criticality is demonstrated, and the nonlinear mechanism in the PLC effect is also explained by comparing with the classic sand--pile model, and by combining with the dynamic strain aging (DSA) principle and the dislocation dynamics.
Key wordsAl-Cu alloy    serrated yielding    statistical analysis
收稿日期: 2005-09-29     
ZTFLH:  O344.7  
[1] Portevin A, Le Chatelier F. Compt Rend Academie Sci, 1923; 176: 507
[2] Bian X F. Spec Cast Nonferrous Alloys, 2004; 6: 43 (边秀房.特种铸造及有色合金, 2004;6:43)
[3] Cottrell A H. Dislocations and Plastic Flow in Crystals. London: Oxford University Press, 1953: 134
[4] Tian B H, Li H X, Zhang Y G, Chen C Q. Acta Metall Sin, 1997; 33: 577 (田宝辉,李焕喜,张永刚,陈昌麒.金属学报,1997;33:577)
[5] Jiang H F, Zhang Q C, Xu Y H, Wu X P. Acta Metall Sin, 2006; 42: 139 (江慧丰,张青川,徐毅豪,伍小平.金属学报,2006;42:139)
[6] Pink E, Grinberg A. Acta Metall, 1982; 30: 2153
[7] Hayes R W, Hayes W C. Acta Metall, 1982; 30: 1295
[8] Pink E, Weberning W M. Acta Metall, 1987; 35: 127
[9] Chihab K, Estrin Y, Kubin L P, Vergnol J. Scr Metall, 1987; 21: 203
[10] Lebyodkin M, Brechet Y, Estrin Y, Kubin L P. Phys Rev Lett, 1995; 74: 4758
[11] Lebyodkin M, Brechet Y, Estrin Y Kubin L P. Acta Mater, 1996; 44: 4531
[12] Lebyodkin M, DuninBarskowskii L, Brechet Y, Kubin L P, Estrin Y. Acta Mater, 2000; 48: 2529
[13] Bharathi M S, Lebyodkin M, Ananthakrishna G, Fressen- geas C, Kubin L P. Acta Mater, 2002; 50: 2813
[14] Ananthakrishna G, Noronha S J, Fressengeas C, Kubin L P. Phys Rev, 1999; 60E: 5455
[15] Zhang Q C, Toyooka S, Meng Z B, Suprapedi-. In: Baak-lini G Y, Nove C A, Boltz E S, eds., Nondestructure Evaluation of Aging Materials and Composites III, Vol.3585, Newport Beach, California, SPIE, 1999: 389
[16] Zhang Q C, Wu X P. In: Shen G X, Cha S S, Chiang F P, Mercer C R, eds., Optical Technology and Image Processing for Fluids and Solids Diagnostics 2002, Vol.5058, Washington, SPIE, 2003: 257
[17] Zhang Q C, Jiang Z Y, Jiang H F, Chen Z J, Wu X P. Ait J Plast, 2005; 21: 2150
[18] Jiang Z Y, Zhang Q C, Wu X P. In: Shen G X, Cha S S, Chiang F P, Mercer C R, eds., Optical Technology and Image Processing for Fluids and Solids Diagnostics 2002, Vol.5058, Washington, SPIE, 2003: 283
[19] Jiang H F, Zhang Q C, Jiang Z Y, Wu X P. Acta Metall Sin, 2005; 41: 727 (江慧丰,张青川,蒋震宇,伍小平.金属学报,2005;41:727)
[20] Jiang Z Y, Zhang Q C, Wu X P. J Exp Mech, 2003; 18: 289 (蒋震宇,张青川,伍小平.实验力学,2003;18:289)
[21] Jiang Z Y, Zhang Q C, Jiang H F, Chen Z J, Wu X P. Mater Set Eng, 2005; A403: 154
[22] Jiang H F, Zhang Q C, Jiang Z Y, Zhao S M, Chen Z J, Wu X P. J Exp Mech, 2004; 19: 430 (江慧丰,张青川,蒋震宇,赵思敏,陈忠家,伍小平.实验力 学,2004;19:430)
[23] Chen Z J, Zhang Q C, Jiang Z Y, Jiang H F, Wu X P. J Mater Sci Technol, 2004; 20: 535
[24] Chen Z J, Zhang Q C, Wu X P. Europhys Lett, 2005; 71: 235
[25] Zhang Q C, Wu X P. In: Wu X P, Qin Y W, Fang J, Ke J T, eds., 3rd Int Conf on Experimental Mechanics, Vol.4537, Beijing, SPIE, 2002: 69
[26] Bharathi M S, Lebyodkin M, Ananthakrishna G, Fressen- geas C, Kubin L P. Phys Rev Lett, 2001; 87: 165508
[27] Ranc N, Wagner D. Mater Sci Eng, 2005; A394: 87
[28] McCormick P G, Venkadesan S, Ling C P. Scr Metall Mater, 1993; 29: 1159 van den Brink S H, van den Beukel A, McCormick P G. Phys Status Solidi, 1977; 41a: 513
[29] Bak P, Tang C, Wiesenfeld K. Phys Rev Lett, 1987; 59: 364
[30] Jensen H J, Goddard P, Yeomans J. Self-Organized Crit-icality: Emergent Complex Behavior in Physical and Biological Systems (Cambridge Lecture Notes in Physics) Cambridge, UK: Cambridge University Press, 1998: 13
[31] Diodata P, Marchesoni F. Phys Rev Lett, 1991; 67: 2239
[32] Babcock L, Westervelt R M. Phys Rev Lett, 1990; 64: 2168
[33] Yuan J, Ren Y, Shan X M. Phys Rev, 2000; 61E: 1067
[34] Per Bak, Kan Chen, Creutz M. Nature, 1989; 342: 780
[35] Elmer F-J. Phys Rev, 1997; 56E: R6225
[36] Boettcher S, Percus A G. Phys Rev Lett, 2001; 86: 5211
[37] Aegerter C M. Phys Rev, 1998; 58E: 1438
[38] Zhou T, Wang B H. Chin Phys Lett, 2005; 22: 1072
[39] Bianconi G, Marsili M. arxiv.org/abs/cond-mat 103125- 37, 2003
[40] Tong P Q. J Nanjing Normal Univ (Nat Sci), 1994; 17: 26 (童培庆.南京师范大学学报(自然科学版),1994;17:26)
[41] Lu J H, Lu J A, Chen S H. Chaotic Time Series Analysis and Its Applications. Wuhan: Wuhan University Press, 2002: 46 (吕金虎,陆君安,陈士华.混沌时间序列分析及其应用.武汉: 武汉大学出版社,2002:46)
[1] 王富鑫, 骆良顺, 王亮, 张东徽, 李新中, 苏彦庆, 郭景杰, 傅恒志. 合金成分和冷却速率对Al-Cu合金凝固过程中初生Al2Cu相生长形貌的影响*[J]. 金属学报, 2016, 52(3): 361-368.
[2] 许虹宇,黄陆军,耿林,张杰,黄玉东. Cu含量对Al2O3·SiO2sf/Al-Cu复合材料耐磨性能的影响[J]. 金属学报, 2013, 49(9): 1131-1136.
[3] 张显飞,赵九洲. 来流对Al-Cu合金三维树枝晶生长的影响[J]. 金属学报, 2012, 48(5): 615-620.
[4] 房大然; 段启强; 黄崇湘; 吴世丁; 张哲峰; 李家俊; 赵乃勤 . 等通道转角挤压Al-Cu合金的冲击性能[J]. 金属学报, 2007, 43(12): 1251-1255 .
[5] 刘颢文; 张青川; 卢俊勇; 项国富; 伍小平 . Al-Cu合金中PLC剪切带成核过程三维变形的实验研究[J]. 金属学报, 2006, 42(9): 925-930 .
[6] 江慧丰; 张青川; 徐毅豪; 伍小平 . 时效对Al-Cu合金中锯齿形流动的影响[J]. 金属学报, 2006, 42(2): 139-142 .
[7] 孙亮; 张青川; 江慧丰 . 溶质浓度对Al-Cu合金中PLC效应的影响[J]. 金属学报, 2006, 42(12): 1248-1252 .
[8] 周刚; 王文皓 . 多元Al-Cu系合金凝固过程中显微偏析的计算模拟[J]. 金属学报, 2000, 36(5): 477-482 .
[9] 张济山;崔华;段先进;孙祖庆;陈国良. 雾化喷射沉积成型凝固过程模拟Ⅱ.Al-Cu合金的计算结果[J]. 金属学报, 1998, 34(1): 13-18.
[10] 徐达鸣;曹福洋;李庆春;王永前;张宝友. 变速生长条件下Al-Cu合金的定向凝固枝晶组织[J]. 金属学报, 1995, 31(11): 501-507.
[11] 沈军;蒋祖龄;曾松岩;崔成松;李庆春. 雾化沉积快速凝固过程的计算机模拟──Ⅰ.理论模型[J]. 金属学报, 1994, 30(20): 337-341.
[12] 葛云龙;杨院生;焦育宁;胡壮麒;高允彦;贾光霖. 电磁离心铸造工艺的研究[J]. 金属学报, 1993, 29(3): 88-89.
[13] 徐达鸣;李庆春;王永前. 定向共晶组织的熔化行为[J]. 金属学报, 1993, 29(10): 28-32.
[14] 徐达鸣;李庆春. 合金凝固传热、传质和液相流动的数值模拟及宏观偏析的预测[J]. 金属学报, 1990, 26(4): 125-129.