Please wait a minute...
金属学报  2006, Vol. 42 Issue (3): 311-316     
  论文 本期目录 | 过刊浏览 |
小孔等离子弧焊接热场瞬时演变过程的数值分析
武传松;王怀刚;张明贤
山东大学
NUMERICAL ANALYSIS OF TRANSIENT DEVELOPMENT OF TEMPERATURE FIELD IN KEYHOLE PLASMA ARC WELDING
引用本文:

武传松; 王怀刚; 张明贤 . 小孔等离子弧焊接热场瞬时演变过程的数值分析[J]. 金属学报, 2006, 42(3): 311-316 .

全文: PDF(400 KB)  
摘要: 根据小孔等离子弧焊接的工艺特点,考虑等离子弧对熔池的“挖掘”作用,提出了一种新的焊接热源模型(TPAW),以描述和反映等离子弧作用下“倒喇叭”状焊缝横断面的特点以及等离子弧热流沿工件厚度方向的分布。在此基础上,对小孔等离子弧焊接热场进行了有限元计算,分析了引弧后熔池及周围温度场的瞬时演变过程。计算出的小孔等离子弧焊缝形状与试验结果基本吻合,达到准稳态的时间与试验测试值一致。
关键词 小孔等离子弧焊接热源模型热场    
Abstract:With considering the characteristics of keyhole plasma arc welding and the plasma’s “digging” action to the weld pool, a new welding heat source model (TPAW) is proposed to describe and reflect the “reversed bugle” configuration of weld cross section under plasma’s action and the heat intensity distribution along the workpiece thickness direction. Based on TPAW, finite element calculation of temperature field in keyhole plasma arc welding is conducted, and the transient development of weld pool and surrounding thermal profiles are analyzed. The predicted weld geometry and the time needed to reach the quasi-steady state are in agreement with experimental measurements.
Key wordskeyhole plasma arc welding (K-PAW)    heat source model    temperature field
收稿日期: 2005-06-27     
ZTFLH:  TG402  
[1] Dong C L, Wu L, Shao Y C. Chin Mech Eng, 2000; 11: 577 (董春林,吴林,邵亦陈.中国机械工程, 2000;11:577)
[2] Zhu Y F, Zhang H, Dong C L, Shao Y C. Aerosp Manuf Technol, 2002; (2): 22 (朱佚峰,张慧,董春林,邵亦陈.航天制造技术,2002;(2): 22
[3] Zhang Y M, Zhang S B. Weld J, 1999; 78(2) : 53s
[4] Mackwood A P, Crafer R C. Optics Laser Technol, 2005; 37: 99
[5] Dowden J, Postacioglu N, Davis M, Kapadia P D. J Phys D: Appl Phys, 1987; 20: 36
[6] Kroos J, Gratzke U, Simon G. J Phys D: Appl Phys, 1993; 26: 474
[7] Chen X, Wang H X. J Phys D: Appl Phys, 2003; 36: 1634
[8] Metcalfe J C, Quigley M B C. Weld J, 1975; 54(3): 99s
[9] Lankalapalli K N, Tu J F, Gartner M. J Phys D: Appl Phys, 1996; 29: 1831
[10] Kaplan A. J Phys D: Appl Phys, 1994; 27: 1805
[11] Pecharapa W, Kar A. J Phys D: Appl Phys, 1997; 30: 3322
[12] Lampa C, Kaplan A, Powell J, Magnusson C. J Phys D: Appl Phys, 1997; 30: 1293
[13] Dong H G, Gao H M, Wu L. Trans Chin Weld Inst, 2003; 23: 24 (董洪刚,高洪明,吴林.焊接学报,2003;23:24)
[14] Sun J S, Wu C S. Ada Metall Sin, 2003; 39: 79 (孙俊生,武传松.金属学报, 2003;39:79)
[15] Fan H G, Kovacevic R. J Phys D: Appl Phys, 1999; 32: 2902
[16] Keanini R G, Rubinsky B. Int J Heat Mass Transfer, 1993; 36: 3283
[17] Nehad A K. Int Commn Heat Mass Transfer, 1995; 22: 79
[18] Goldak J, Chakravarti A, Bibby M. Metall Trans, 1984; 15B: 299
[19] Wang H G, Wu C S, Zhang M X. Trans Chin Weld Inst, 2005; 25: 63 (王怀刚,武传松,张明贤.焊接学报, 2005;25:63)
[1] 李岩,冯妍卉,张欣欣, 武传松. 考虑小孔演变的等离子弧焊接动态热源模型及验证[J]. 金属学报, 2013, 49(7): 804-810.
[2] 胥国祥 武传松 秦国梁 王旭友. 铝合金T型接头激光+GMAW复合热源焊温度场的有限元分析[J]. 金属学报, 2012, 48(9): 1033-1041.
[3] 张转转 胥国祥 武传松. 基于小孔形状的TCS不锈钢激光+GMAW-P复合焊热场模型[J]. 金属学报, 2011, 47(11): 1450-1458.
[4] 胥国祥 武传松 秦国梁 王旭友 林尚扬. 激光+GMAW复合热源焊焊缝成形的数值模拟 III. 电弧脉冲作用的处理与热源模型的改进[J]. 金属学报, 2009, 45(1): 107-112.
[5] 武传松;郑炜;吴林. 脉冲电流作用下TIG焊接熔池行为的数值模拟[J]. 金属学报, 1998, 34(4): 416-422.
[6] 武传松;曹振宁;吴林. 熔透情况下三维TIG焊接熔池流场与热场的数值分析[J]. 金属学报, 1992, 28(10): 47-52.