Please wait a minute...
金属学报  2005, Vol. 41 Issue (12): 1285-1288     
  论文 本期目录 | 过刊浏览 |
MgS+1.5%ZrS2固体电解质硫浓差电池的实验研究
于景坤; 刘涛;陈敏
东北大学材料与冶金学院; 沈阳 110004
EXPERIMENTAL RESEARCH ON SULPHUR CONCENTRATION CELL WITH MgS+1.5%ZrS2 SOLID ELECTROLYTE
YU Jingkun; LIU Tao; CHEN Min
School of Materials & Metallurgy; Northeastern University; Shenyang 110004
引用本文:

于景坤; 刘涛; 陈敏 . MgS+1.5%ZrS2固体电解质硫浓差电池的实验研究[J]. 金属学报, 2005, 41(12): 1285-1288 .
, , . EXPERIMENTAL RESEARCH ON SULPHUR CONCENTRATION CELL WITH MgS+1.5%ZrS2 SOLID ELECTROLYTE[J]. Acta Metall Sin, 2005, 41(12): 1285-1288 .

全文: PDF(124 KB)  
摘要: 以金属和升华硫为原料, 利用温度梯度法合成硫化物; 并用合成的MgS+1.5%ZrS2 作为固体电解质, 以Mo+MoS2作为参比极研制了硫浓差电池. 在1623 K利用该电池 对碳饱和铁水(氧的活度a[O]≤2×10 -6)中的硫含量进行了测定. 进一步优化了硫浓差电池的结构, 解决了电解质管的炸裂和漏气问题, 同时采用特殊 工艺抑制了硫化物水化. 结果表明, 该硫浓差电池的电动势信号稳定, 重现性好且持 续时间长.
关键词 硫浓差电池固体电解质参比极    
Abstract:Large amount of sulphides were synthesized safely by a temperature gradient method using metals and sublimed sulfur as the raw materials, and a sulphur concentration cell was developed by using MgS+1.5%ZrS2 as solid electrolyte and Mo+MoS2 as reference electrode. The sulphur content in carbon--saturated liquid iron (oxygen activity degreea[O] ≤2×10 -6) at 1623 K was determined by using the prepared sulphur concentration cell. The gas leakage and splitting crack were solved by optimizing the structure of solid electrolyte tubes, hydration and oxidation of the sulphide were also avoided by using special processes. The results showed that the sulphur concentration cell could be continuously used with stable signals and good reproducibility.
Key wordssulphur concentration cell    solid electrolyte    reference electrode
收稿日期: 2005-03-30     
ZTFLH:  TF031  
[1] Taniguchi M, Wakihara M, Uchida T, Hirakawa K, Nii J. Electrochem Soc, 1988; 135: 217
[2] Egaini A, Onoye T, Narita K. Solid State Ionics, 1980; 3/4: 617
[3] Ono K, Moriyama J. Solid State Ionics, 1981; 2: 127
[4] Hong Y R, Jin C J, Li L S, Sun J L. Sens Actuators, 2002; 87B:13
[5] Liu Q G, Worrell W L. Solid State Ionics, 1988; 28-30: 1668
[6] Gozzi D, Granati P. Metall Mater Trans, 1994; 25B: 561
[7] Zhang Z W, Feng G S, Zhang J L, Cao C G. Iron Steel, 2000; 35: 57 (张宗旺,冯根生,张建良,曹传根.钢 铁, 2000;35:57)
[8] Gu L J, Tang Z H. Iron Steel, 1984; 19: 13 (古隆建,唐仲和.钢铁, 1984;19:13)
[9] Han H O, Wang S L. Solid State Ionics, 1992; 51: 157
[10] Wang S L, Han H O. Steelmaking, 1989; 5: 47 (王舒黎,韩海鸥.炼钢, 1989;5:47)
[11] Wang S L, Mao J. Northeast Univ Technol, 1991; 12: 221 (王舒黎,毛杰.东北工学院学报, 1991;12:221)
[12] Liu T, Yu J K, Yuan Y H. Northeast Univ (Nat Sci), 2005; 26: 260 (刘涛,于景坤,袁宇皓.东北大学学报(自然科学版),2005;
[13] Liu T, Yu J K, Chen M. Northeast Umv (Nat Sci), 2005; 26: 370 26:260) (刘涛,于景坤,陈敏.东北大学学报(自然科学版),2005; 26:370).
[1] 高运明, 何林, 秦庆伟, 李光强. 利用ZrO2 固体电解质研究Na3AlF6-SiO2 熔盐中的电沉积[J]. 金属学报, 2022, 58(10): 1292-1304.
[2] 厉英,丁玉石,崔绍刚,王常珍. 掺杂Sc的CaZrO3的制备及电学性能[J]. 金属学报, 2012, 48(5): 575-578.
[3] 高运明 宋建新 张业勤 郭兴敏. 利用电化学方法测定高温银液中氧的扩散系数[J]. 金属学报, 2010, 46(3): 277-281.
[4] 李福燊; 金从进; 鲁雄刚; 周国治; 朱立新; 胡晓军; 李泽亚; 王峰 ; 沈强 . 钢液固体电解质脱氧体脱氧时的二次氧化现象[J]. 金属学报, 2004, 40(7): 673-676 .
[5] 李福shen; 鲁雄刚; 金从进 . 钢液的固体电解质无污染脱氧[J]. 金属学报, 2003, 39(3): 287-292 .
[6] 胡晓军; 肖莉 . 一种无污染脱氧方法[J]. 金属学报, 1999, 35(3): 316-319 .
[7] 陈威;王常珍;刘亮. 测熔融铝合金中氢活度的传感法研究[J]. 金属学报, 1995, 31(19): 305-310.
[8] 邹开云;王常珍;赵乃仁. La传感器及碳饱和铁液中La活度测定的研究[J]. 金属学报, 1995, 31(17): 195-199.
[9] 谢刚;宋宁. 熔融NaF-AlF_3体系活度的测定[J]. 金属学报, 1994, 30(17): 199-203.
[10] 冀春霖;许茜;翟玉春. 实际转炉吹炼的冰铜熔体中S和Fe活度的测定[J]. 金属学报, 1992, 28(7): 45-49.
[11] 郑敏辉;陈一松. 电动势法测定Na_2SnO_3的生成自由能[J]. 金属学报, 1992, 28(2): 91-93.
[12] 郑敏辉;幸塚善作. In-Bi-Tl三元系液体合金中成分的活度测定[J]. 金属学报, 1990, 26(4): 108-112.
[13] 张千象. 固态Cu-Al合金中Al活度的测定[J]. 金属学报, 1989, 25(2): 149-151.