Please wait a minute...
金属学报  2004, Vol. 40 Issue (5): 509-514     
  论文 本期目录 | 过刊浏览 |
钢液脱氧和氧化物夹杂控制的热力学模型
张晓兵
宝钢集团一钢公司技术中心; 上海 200431
Thermodynamic Modeling for Controls of Deoxidation and Oxide Inclusions in Molten Steel
ZHANG Xiaobing
Technology Center; Shanghai No.1 Iron & Steel Co.; Baosteel Group; Shanghai 200431
引用本文:

张晓兵 . 钢液脱氧和氧化物夹杂控制的热力学模型[J]. 金属学报, 2004, 40(5): 509-514 .
. Thermodynamic Modeling for Controls of Deoxidation and Oxide Inclusions in Molten Steel[J]. Acta Metall Sin, 2004, 40(5): 509-514 .

全文: PDF(3553 KB)  
摘要: 应用多元系亚正规溶液模型计算了CaO-MgO-Al2O3-SiO2和CaO-MnO-Al2O3-SiO2系各组元的活度, 并以此为基础建立 了钢液脱氧和氧化物夹杂控制的热力学模型, 用于炼钢过程 脱氧、渣-金平衡和氧化物夹杂-钢液平衡的热力学计算, 以控制钢 液脱氧和氧化物夹杂成分. 在钢包精炼的渣-金平衡条件下钢液硅 脱氧和铝硅脱氧后钙处理的工业性实验, 以及钢液凝固过程 形成的钢中氧化物夹杂分析结果说明, 该热力学模拟方法可 用于钢包精炼中钢液的脱氧控制和钢中氧化物夹杂控制.
关键词 热力学模拟 脱氧控制 渣-金平衡    
Abstract:Component activities in CaO-MgO-Al2O3-SiO2 and CaO-MnO-Al2O3-SiO2 systems were calculated by a sub-regular solution model of a multi-component system. A thermodynamic modeling for controls of deoxidation and oxide inclusion in molten steel was developed based on these calculations, which was used for thermodynamic calculations for deoxidation, slag-melt equilibration and oxide-melt equilibration in order to control the deoxidation and compositions of oxide inclusion of steel. The results of model applications are validated with the industrial database such as the silicon deoxidation through slag-melt equilibration in LF, the calcium treatment of Al-Si killed steel and the composition of oxide inclusion formed during solidification in caster. The presented modeling can be used in deoxidation control and oxide inclusion control in steel.
Key wordsthermodynamic modeling    deoxidation control    slag-melt equilibration
收稿日期: 2003-05-26     
ZTFLH:  TF59  
[1] The Japan Society for the Promotion of Science. Steelmaking Data Sourcebook, The 19th Committee on Steelmaking, New York: Gordon and Breach Science Publishers, 1988:280
[2] Ban-Ya S, Hiso M. Tetsu Hangané, 1988: 74:1701(万谷志郎,日野 光兀.铁钢,1988;74:1701)
[3] Pelton A D, Blander M. In: Fine H A, Gashell D R, eds., 2nd Int Symp on Metallurgical Slag and Fluxed, New York: Metal Society AIME, 1984:281
[4] Hillert M, Jansson B, Sundman B. Metall Trans, 1990; 21B: 405
[5] Kapoor M K, Frohberg M G. In: Iron and Steel Institute, UK, ed., Symposium on Chemical Metallurgy of Iron and Steel. Sheffield, London, 1971:17
[6] Gaye H, Welfringer J. In: Fine H A, Gashell D R eds., 2nd Int Symp on Metallurgical Slag and Fluxed, New York: Metal Society AIME, 1984:357
[7] Pelton A D, Flengas S M. Can J Chem, 1969; 47:2283
[8] Zhang X B, Jiang G C, Xu K O. CALPHAD, 1997; 21: 311
[9] Gatellier C, Olette M. Rev Metall, 1979; 76:378
[10] Nadif M, Gatellier C. Rev Metall, 1986; 83:377
[11] Ban-Ya S, Hino M. Chemical Properties of Molten Slags, The Iron and Steel Institute of Japan, Tokyo, 1991:1
[12] Zhang X B, Jiang G C, Xu K D. Acta Metall Sin, 1997; 33:1085(张晓兵,蒋国昌,徐匡迪.金属学报,1997;33:1085)
[13] Zhang X B, Jiang G C, Xu K D. In: Iron and Steel Society, USA, ed., The 5th Int Conf on Molten Slags, Fluxes and Salts 1997, Sydney, Australia, 1997:259
[14] Zhang X B, Jiang G C, Tang K, Ding W, Xu K D. CALPHAD, 1997; 21; 301
[15] Abraham K P, Davies M W, Richardson F D. J Iron Steel Inst, 1960; 196:82
[16] Sharma R A, Richardson F D. Trans AIME, 1965; 233: 586
[17] Risbud S H, Pask J A. J Am Ceram Soc, 1977; 60:418
[18] Rein R H, Chipman J. Trans AIME, 1965; 233:415
[19] Sharma R A, Richardson F D. J Iron Steel Inst, 1961; 198: 386
[20] Mehta S R, Richardson F D. J Iron Steel Inst, 1965; 203: 524
[21] Mogutnov B M, Zaitsev A I, Livina A D. In: Iron and Steel Society, USA, ed., 2nd Int Congress on the Science and Technology of Iron Making and 57th, Ironmaking Conference. Toronto, Canada, 22-25 March, 1998:1477
[22] Eriksson G, Pelton A D. Metall Trans, 1993; 24B: 807
No related articles found!