Please wait a minute...
金属学报  2011, Vol. 47 Issue (10): 1292-1300    DOI: 10.3724/SP.J.1037.2011.00110
  论文 本期目录 | 过刊浏览 |
对称拉压循环下金属屈服硬化的各向异性与细观变形转动的不均匀性
张克实1,石艳柯1,许凌波1,蔚夺魁2
1.广西大学工程防灾与结构安全教育部重点实验室, 南宁 530004
2.沈阳航空发动机研究所, 沈阳 110015
ANISOTROPY OF YIELDING/HARDENING AND MICROINHOMOGENEITY OF DEFORMING/ROTATING FOR A POLYCRYSTALLINE METAL UNDER CYCLIC TENSION–COMPRESSION
ZHANG Keshi1, SHI Yanke1, XU Lingbo1, YU Duokui2
1.Key Lab of Engineering Disaster Prevention and Structural Safety of China Ministry of Education, Guangxi University, Nanning 530004
2.Aeroengine Institute of Shenyang, Shenyang 110015
引用本文:

张克实 石艳柯 许凌波 蔚夺魁. 对称拉压循环下金属屈服硬化的各向异性与细观变形转动的不均匀性[J]. 金属学报, 2011, 47(10): 1292-1300.
, , , . ANISOTROPY OF YIELDING/HARDENING AND MICROINHOMOGENEITY OF DEFORMING/ROTATING FOR A POLYCRYSTALLINE METAL UNDER CYCLIC TENSION–COMPRESSION[J]. Acta Metall Sin, 2011, 47(10): 1292-1300.

全文: PDF(1081 KB)  
摘要: 考虑金属材料晶体细观塑性变形流动的各向异性性质以及晶体滑移的非线性运动硬化,以Voronoi多晶集合体作为材料的代表性单元(RVE), 用晶体塑性模型描述金属材料的细观本构关系, 对多晶纯Cu进行了晶粒尺度的对称应变循环细观分析.证实了本文模型和方法可以用于描述多晶金属材料不同应变幅的循环滞回特性,并可以用于估计金属材料在循环加载过程中后继屈服面形状和曲率与预加载方向相关的变化. 分析发现: 在对称应变循环中, 随循环数增加, 多晶材料宏观拉伸方向的内部细观应变分量的统计变异系数(COV)不断增加, 材料内部晶格的不均匀细观转动也越来越显著. 这些结果表明, 循环过程中应变分布差异和晶格转动差异逐渐增大,从而导致材料内部微结构越来越不均匀.
关键词 循环塑性 晶体滑移 各向异性屈服与硬化 不均匀变形    
Abstract:The mesoscopic analyses at a grain level are carried out for a pure copper under symmetrical strain cyclic loading. The Voronoi crystal aggregation which consists of a number of randomly arranged crystal grains is adopted in the analysis as a RVE (representative volume element) of a metal material, and a crystalline plastic model is applied to describe the grain’s mesoscopic constitutive relationship, by which the mesoscopic plastic slipping in anisotropic grain follows the nonlinear kinematic hardening law. Through numerical simulation it is confirmed that the present method can be applied to simulate the hysteresis for a polycrystalline material under cycle loading of different strain amplitudes, and it can be used to estimate the subsequent yield surface shape and its curvature change of the material in the cycle loading process, which are relative with the preloading direction. According to statistical analysis, it is found that the coefficient of variation (COV) for internal axial strain in the macro tension direction of the polycrystalline RVE considerably increases with the cyclic number in the symmetrical strain cycle loading, and the statistical lattice rotating of the material increases with loading cycle number. These results indicate that the internal material’s microstructure will tend to heterogeneity, since the coefficients of variation for the inhomogeneous strain and rotation angle increase with the cyclic number.
Key wordscyclic plasticity    slipping    anisotropic yielding and hardening    inhomogeneous deformation
收稿日期: 2011-03-04     
ZTFLH: 

TG146,O344

 
基金资助:

国家自然科学基金项目90815001和11072064, 广西大学科学基金项目及广西理工科学实验中心重点项目LGZX201101资助

作者简介: 张克实, 男, 1954年生, 教授, 博士
[1] Morrison J L M, Shepherd W. Proc Inst Mech Eng, 1950; 163: 1

[2] Marin J, Hu L W. ASME Trans, 1956; 78: 499

[3] Marin J, Sauer J A. J Franklin I, 1953; 256: 119

[4] Yang N S. Acta Mech Sin, 1958; 2: 43

(杨南生. 力学学报, 1958; 2: 43)

[5] Frederick C O, Armstrong P J. Mater High Temp, 2007; 24: 1

[6] Jiang Y, Kurath P. Int J Plast, 1996; 12: 387

[7] Chaboche J L. Int J Plast, 1986; 2: 149

[8] Chaboche J L. Int J Plast, 2008; 24: 1642

[9] Ohno N, Wang J D. Int J Plast, 1993; 9: 375

[10] Bodner S, Partom Y. J Appl Mech, 1975; 42: 385

[11] Khan A S, Wang X. Int J Plast, 1993; 9: 889

[12] Khan A S, Chen P. Int J Plast, 1996; 12: 737

[13] Khan A S, Kazmi R, Pandey A, Stoughton T. Int J Plast, 2009; 25: 1611

[14] Khan A S, Pandey A, Stoughton T. Int J Plast, 2010; 26: 1421

[15] Shi Y K, Zhang K S, Hu G J. Acta Metall Sin, 2009; 45: 1370

(石艳柯, 张克实, 胡桂娟. 金属学报, 2009; 45: 1370)

[16] Hu G J, Zhang K S, Shi Y K. Acta Metall Sin, 2010; 46: 466

(胡桂娟, 张克实, 石艳柯. 金属学报, 2010; 46: 466)

[17] Su L, Zhang K S, Zhang G, Gao H S. J Mech Strength, 2008; 30: 565

(苏 莉, 张克实, 张光, 高行山. 机械强度, 2008; 30: 565)

[18] Taylor G L. J Inst Met, 1938; 62: 307

[19] Hill R, Rice J R. J Mech Phys Solids, 1972; 20: 401

[20] Asaro R J, Needleman A. Acta Metall, 1985; 33: 923

[21] Liang N G, Cheng P S. Acta Mech Sin, 1990; 22: 680

(梁乃刚, 程品三. 力学学报, 1990; 22: 680)

[22] Liang N G, Liu H Q, Wang Z Q. Sci China, 1995; 25A: 858

(梁乃刚, 刘洪秋, 王自强. 中国科学, 1995; 25A: 858)

[23] Chiang D Y, Beck J L. Int J Solids Struct, 1994; 31: 469

[24] Chiang D Y, Su K H, Liao C H. Int J Plast, 2002; 18: 51

[25] Fu Q, Liu F, Zhang J, Liang N G. Acta Mech Sin, 2010; 42: 880

(付 强, 刘芳, 张晶, 梁乃刚. 力学学报, 2010; 42: 880)

[26] Zhang K S. Acta Mech Sin, 2004; 36: 714

(张克实. 力学学报, 2004; 36: 714)

[27] Zhang K S, Wu M S, Feng R. Int J Plast, 2005; 21: 801

[28] Hutchinson J W. Proc R Soc London, 1976; 348A: 101

[29] Kang G Z, Ohno N, Nebu A. Int J Plast, 2003; 19: 1801

[30] Cailletaud G, Forest S, Jeulin D, Feyel F, Galliet I, Mounoury V, Quilici S. Comput Mater Sci, 2003; 27: 351
[1] 彭剑,高毅,代巧,王颖,李凯尚. 316L奥氏体不锈钢非对称载荷下的疲劳与循环塑性行为[J]. 金属学报, 2019, 55(6): 773-782.
[2] 杨续跃 姜育培. 镁合金热变形下变形带的形貌和晶体学特征[J]. 金属学报, 2010, 46(4): 451-457.
[3] 邓运来; 张新明; 唐建国; 刘瑛; 陈志永; 周卓平 . 多晶纯铝轧制变形晶粒局部取向的演变[J]. 金属学报, 2005, 41(5): 477-482 .
[4] 杨显杰; 罗艳; 高庆; 蔡力勋 . 45钢在应变循环与棘轮变形下的随动硬化演化实验研究[J]. 金属学报, 2005, 41(2): 133-139 .
[5] 杨显杰; 康国政; 高庆; 孙亚芳 . 304不锈钢的高温单轴应变循环与棘轮行为[J]. 金属学报, 1999, 35(7): 698-702 .
[6] 肖林;顾海澄. Zr及Zr-4合金的循环耗散能、分形维数与疲劳寿命的关系[J]. 金属学报, 1998, 34(7): 705-712.
[7] 杨显杰;高庆;向阳开;蔡力勋. 紫铜的非比例循环塑性变形行为实验研究[J]. 金属学报, 1998, 34(10): 1055-1060.
[8] 杨显杰;高庆;何国求;蔡力勋. 316不锈钢的非比例循环特性[J]. 金属学报, 1996, 32(1): 15-22.
[9] 杨显杰;高庆;蔡力勋;陈旭;袁珩. 42CrMo钢在非比例循环加载下的塑性流动分析[J]. 金属学报, 1995, 31(4): 170-176.