Please wait a minute...
金属学报  2011, Vol. 47 Issue (3): 305-310    DOI: 10.3724/SP.J.1037.2010.00591
  论文 本期目录 | 过刊浏览 |
激光焊接过程中残留液体金属的高速高倍在线观察
温鹏1,荻崎贤二2, 山本元道2
1.清华大学机械工程系, 北京 100084
2.广岛大学机械工程系, 日本 739--8527
HIGH SPEED AND HIGH MAGNIFICATION IN SITU OBSERVATION OF RESIDUAL LIQUID METAL DURING LASER WELDING PROCESS
WEN Peng1,Shinozaki Kenji2, Yamamoto Motomichi2
1.Mechanical Engineering Department, Tsinghua University, Beijing 10084
2.Mechanical Engineering Department, Hiroshima University, Japan 739–8527
引用本文:

温鹏 荻崎贤二 山本元道. 激光焊接过程中残留液体金属的高速高倍在线观察[J]. 金属学报, 2011, 47(3): 305-310.
, , , . HIGH SPEED AND HIGH MAGNIFICATION IN SITU OBSERVATION OF RESIDUAL LIQUID METAL DURING LASER WELDING PROCESS[J]. Acta Metall Sin, 2011, 47(3): 305-310.

全文: PDF(2454 KB)  
摘要: 采用高速摄像机和光学显微镜构成的摄像装置对激光焊接熔池后端的凝固行为进行高速高倍摄像, 详细记录了柱状晶从液态熔池后部析出过程以及残留在已析出柱状晶周围的液体金属的凝固行为. 采用液体Sn急冷将焊接过程中正在凝固的焊缝金属冷冻保存到室温, 并与高速高倍摄像观察到的熔池后端的凝固行为进行了对比分析. 对3种奥氏体不锈钢材料焊缝凝固过程中残留液体金属的存在范围进行了观察和比较.在线观察到的残留液体金属是焊缝金属凝固过程中固/液相共存区间的初始部分,即与熔池相连的较多的液体金属. 针对3种不锈钢材料在线观察到的残留液体金属的存在范围与热裂纹实验获得的热裂纹敏感性有较好的对应关系,为发展一种通过在线观察判断材料凝固热裂纹敏感性的方法提供了实验依据.
关键词 激光焊接 凝固热裂纹 残留液体金属 在线观察 急冷    
Abstract:Weld solidification cracking is resulted from the low ductility during solidification progress of weld metal, which is considered to be determined by the distribution of residual liquid metal at solidification front. Thus, the in situ observation of residual liquid metal during welding can give significant information of solidification progress and weld solidification cracking. Few reports have been found so far in this aspect though many in situ observation researches have been carried out in welding field, for example, the observation of droplet transfer, weld pool shape, weld plasma and phase transformation etc.. In this paper, solidification behavior of residual liquid metal at the trailing edge of the weld molten pool was in situ observed directly during laser welding by using high speed camera and high magnification optical lens. The precipitation of columnar grain from the molten pool and the solidification of the residual liquid metal at the trailing edge of weld molten pool were recorded in detail by using the high speed video system. Meanwhile, the solidifying structures in solidification process were frozen and reserved to room temperature by using the liquid Sn quenching method during laser welding. The quantity and morphology of residual liquid metal in quenched samples were observed and compared with the in situ observation results. It was found that the in situ observed residual liquid metal was the initial part of the coexistence range of liquid and solid during solidification progress. The in situ observed existence range of residual liquid metal has correspondence with the solidification cracking susceptibility in accordance with the fan–shaped hot cracking test results for three different austenite stainless steels. Consequently, this research provides experimental basis for the relationship between residual liquid metal and solidification cracking susceptibility. It shows the possibility to develop an in situ observation method to directly evaluate solidification cracking susceptiility of different materials during welding process.
Key wordslaser welding    solidification cracking    residual liquid metal    in situ observation    quenching
收稿日期: 2010-11-04     
ZTFLH: 

TG456.7

 
作者简介: 温鹏, 男, 1981年生, 讲师
[1] Brandi S, Taniguchi C, Liu S. Weld J, 1991; 70(10): 261

[2] Luksa R. J Mater Process Technol, 2006; 17: 285

[3] Song H S, Zhang Y M. Weld J, 2007; 86(10): 323

[4] Yue J F, Li L Y, Fan F L, Wu B L. China Weld, 2009; 18: 47

[5] Matsuda F, Nakagawa H, Tomita S, Kohomoto H, Honda Y. Q J Jpn Weld Soc, 1988; 6: 401

[6] Wen P, Shinozaki K, Yamamoto M, Tamura T, Nemoto N. Q J Jpn Weld Soc, 2009; 2: 134

[7] Ai F, Hong Y, Jin W Q, Luo H S, Liu Y, Pan X H. Sci China, 2007; 50G: 525

[8] Komizo Y, Terasaki H. Mater Sci Forum, 2010; 638–642: 3722

[9] Kawahito Y, Matsumoto N, Mizutani M, Katayama S. Sci Technol Weld Joining, 2008; 8: 744

[10] Li G H, Cai Y, Wu Y X. Opt Laser Eng, 2009; 47: 990

[11] Kou S. Welding Metallurgy. 2nd Ed., New Jersey: John Wiley & Sons, 2002: 263

[12] Matsuda F, Nakagawa H, Tomita S, Sorada K. Q J Jpn Weld Soc, 1988; 6: 394

[13] Matsuda F, Nakagawa H, Lee J B. Trans JWRI, 1987; 16: 343

[14] Kotecki D J, Siewert T A. Weld J, 1992; 71: 171s

[15] Luo X J, Ashida E, Kitamura I, Shono S, Matsuda F. In: Preprints of the National Meeting of JWS 68th, Tokyo: Japan Welding Society, 2001: 282
[1] 刘杨,王磊,宋秀,梁涛沙. DD407/IN718高温合金异质焊接接头的组织及高温变形行为[J]. 金属学报, 2019, 55(9): 1221-1230.
[2] 李坤,单际国,王春旭,田志凌. T250马氏体时效钢激光焊接-时效处理接头的强韧性*[J]. 金属学报, 2015, 51(8): 904-912.
[3] 李玉斌, 王巍, 何建军, 张志强, 张彤燕. 亚共析U-Nb合金激光焊接接头的微观结构及力学性能*[J]. 金属学报, 2014, 50(3): 379-386.
[4] 周惦武,彭艳,徐少华,刘金水. 添加Sn粉激光焊接钢/铝合金异种金属的显微组织与性能[J]. 金属学报, 2013, 49(8): 959-968.
[5] 杨成功,单际国,任家烈. TiNi形状记忆合金激光焊接焊缝金属相变温度的控制[J]. 金属学报, 2013, 49(2): 199-206.
[6] 董丹阳, 刘杨, 王磊, 杨玉玲, 李金凤, 金梦梦. 应变速率对DP780钢激光焊接接头动态变形行为的影响[J]. 金属学报, 2013, 49(12): 1493-1500.
[7] 杨成功,单际国,任家烈. TiNi合金激光焊接接头形状恢复温度的研究[J]. 金属学报, 2012, 48(5): 513-518.
[8] 杨成功 单际国 温鹏 任家烈. 激光焊接参数对TiNi合金相变温度的影响[J]. 金属学报, 2011, 47(10): 1277-1284.
[9] 温鹏 荻崎贤二 山本元道. 环形结构激光焊接凝固热裂纹的实验研究和数值模拟[J]. 金属学报, 2011, 47(10): 1241-1245.
[10] 胥国祥; 武传松; 秦国梁; 王旭友; 林尚扬 . 激光 + GMAW复合热源焊焊缝成形的数值模拟 II.组合式体积热源的作用模型[J]. 金属学报, 2008, 44(6): 641-646 .
[11] 胥国祥; 武传松; 秦国梁; 王旭友; 林尚扬 . 激光+ GMAW复合热源焊焊缝成形的数值模拟I. 表征激光作用的体积热源分布模式[J]. 金属学报, 2008, 44(4): 478-482 .
[12] 翟秋亚; 徐锦锋 . Cu--Sn合金急冷箔储能焊接头的形貌特征与形成机制[J]. 金属学报, 2005, 41(7): 755-758 .
[13] 孙笠;宋启洪;胡壮麒. 急冷Cu_(30)Al_(70)合金的结构及催化特性[J]. 金属学报, 1996, 32(1): 63-68.
[14] 杨文英;章守华;吕反修. 急冷凝固Ni_3Al合金中的亚稳相[J]. 金属学报, 1992, 28(2): 25-29.