Please wait a minute...
金属学报  1982, Vol. 18 Issue (5): 592-598    
  论文 本期目录 | 过刊浏览 |
LaNi_5-LaCu_5相平衡与贮氢机制
梁敬魁;王朝果
中国科学院物理研究所;中国科学院物理研究所
PHASE EQUILIBRIUM AND HYDROGEN ABSORPTION OF LaNis-LaCus SYSTEM
Liang Jingkui; Wang Chaoguo (Institute of physics; Academia Sinica; Beijing)
引用本文:

梁敬魁;王朝果. LaNi_5-LaCu_5相平衡与贮氢机制[J]. 金属学报, 1982, 18(5): 592-598.
, . PHASE EQUILIBRIUM AND HYDROGEN ABSORPTION OF LaNis-LaCus SYSTEM[J]. Acta Metall Sin, 1982, 18(5): 592-598.

全文: PDF(986 KB)  
摘要: 本文用X射线分析和热学分析的方法研究了LaNi_5-LaCu_5赝二元系的相平衡关系。这一体系属连续固溶体体系。随Cu含量的增加,熔点降低,点阵常数α和c增加,贮氢量下降,氢化物的稳定性随之提高。 论证了LaNi_(5-x)Cu_xH_y是LaNi_(5-x)Cu_x-H_2体系的一个独立化合物,LaNi_(5-x)Cu_x的吸氢机制是合金一部分一部分被氢化形成氢化物的过程,而不是氢均匀地溶解在合金中的连续过程,放氢机制是其逆过程。 在LaNi_(5-x)Cu_x合金中,特别是垂直于主轴的基面,La与Ni(或Cu)的原子半径被分别压缩,但是形成氢化物时,这种压缩现象消失。
Abstract:X-ray diffraction and thermal analyses were used to study the phase equilibrium relationships in the pseudo-binary system LaNi_5-LaCu_5. The system is of a continuous solid solution. The melting point and the amount of hydrogen absorbed decrease as well as the lattice parameters and the stability of the intermetallic hydrides increase with the increase of Cu content. It was determined that LaNi_(5-x)Cu_xH_n is independent compound in the LaNi_(5-x)Cu_x-H_2 system.The absorption and desorption of hydrogen in the LaNi_(5-x)Cu_x-H_2 system is not a homogeneous and continuous process of hydrogen dissolving in alloy, but is the formation of hydride through hydrogenation of the intermetallic compounds LaNi_(5-x)Cu_x by way of one unit cell by another. The atomic radius of both La and Ni (or Cu) are compressed separately in the alloys LaNi_(5-x_Cu_x, especially in the basal planes perpendicular to the principal axis. This compression phenomenon disappears as soon as the hydrides form.
收稿日期: 1982-05-18     
1 Van Vucht, J. H. N.; Kuijpers, F. A.; Bruning, H. C. A. M., Philips Res. Rep., 25(1970) , 133.
2 Buschow, K. H. J., Van Mal, H. H., J. Less-Common Met., 29(1972) , 203.
3 Kuijpers, F. A., Philips Res. Rep. Suppl.,(1973) , №. 2, 1.
4 Van Mal, H. H.; Buschew, K. H. J.; Miedema, A.R., J. Less-Common Met., 35(1974) , 65.
5 Mendelsohn, M. H.; Gruen, D. M., Nature, 269(1977) , 45.
6 Takeshita, T.; Wallace, W. E., J. Less-Common Met., 55(1977) , 61.
7 Dwight, A. E., Rare Earths in Modern Science and Technology, Proc. 13th Rare Earth Res, Conf.(1977) , Eds. G. J. MaCarthy; J. J. Rhyne, Plenum, New York, 1978, p. 325.
8 Shinar, J.; Shaltiel, D.; Davidov, D.; Grayevsky, A., J. Less-Common Met., 60(1978) , 209.
9 Cirafici, S.; Palenzona, A., J. Less-Common Met., 53(1977) , 199.
10 Raynor, G. V., J. Less-Common Met., 53(1977) , 167.
11 Dwight, A. E., Trans, ASM, 53(1961) , 479.
12 Lange N. A., Handbook of Chemistry, 10Ed., McGraw-Hill, New York, 1961, p. 108.
13 Busch, G.; Schlapbach, L.; Thoeni, W.; Waldkirch, Th. V.; Fischer, P.; Furrer, A.; Haelg, W., Hydrogen in Metals, Proc. 2nd Int. Cong., Paris, June, 1977, Vol. 2, Pergamon, Oxford, 1978, p. 1D7/1.
14 梁敬魁;俞育德,物理学报,29(1980) ,1293.k
No related articles found!