Please wait a minute...
金属学报  1986, Vol. 22 Issue (5): 37-46    
  论文 本期目录 | 过刊浏览 |
高碳钢马氏体亚结构的形成与相变开裂
蒋生蕊
兰州大学
MARTENSITIC SUBSTRUCTURE AND TRANSFORMATION CRACKING IN HIGH CARBON STEEL
JIANG Shengrui (Lanzhou University)
引用本文:

蒋生蕊. 高碳钢马氏体亚结构的形成与相变开裂[J]. 金属学报, 1986, 22(5): 37-46.
. MARTENSITIC SUBSTRUCTURE AND TRANSFORMATION CRACKING IN HIGH CARBON STEEL[J]. Acta Metall Sin, 1986, 22(5): 37-46.

全文: PDF(656 KB)  
摘要: 本文从马氏体相变的K-S模型出发,求得了片状马氏体内外的相变应力场,确定了片内的塑性应变和真实应力、解释了亚结构的形成,随之导出了马氏体的屈服切变强度τs与亚结构n/N之间的函数关系 τ_S=G/A'[1/2(ε_(11)~*-ε_(22)~*+(2+β_0~2)~(1/2)(cos43.5°/U+cos34.5°sin9°/V)) 由求得的应力和应力强度因子,说明淬火开裂是完全可能的。
Abstract:Based on the K-S model of the martensitic transformation, the stress field inside and outside the martensitic plate is obtained, the plastic strain and the true stress within the martensitic plate are determined and the formation of the martensitic substructure is discussed, therefore, the relationship between the yield shear strength, τ_s, and the substructure parameter, n/N, of martensitic plate may be deduced as: τ_s=G/A′[1/2(ε_(11)~*-ε_(22)~*)+(2+β_0~2)~(1/2)(cos43.5°/U+cos34.5°sin9°/V)] According to the stress and stress intensity factor resulted, the transformation cracking by quenching is quite possible.
收稿日期: 1986-05-18     
1 Marder, A.R.; Krauss, G., ASM, Trans. Q., 60 (1967) , 651.
2 Krauss, G.; Marder. A.R., Metall. Trans., 2 (1971) , 2343.
3 Kurdjumov, G.; Sachs, G., Z. Phys., 64 (1930) , 325.
4 蒋生蕊;张宏图,金属学报,19(1983) ,A433.
5 #12
6 徐祖耀,马氏体相变与马氏体,科学出版社,1980.
7 Esheby, J.D., Proc. R. Soc., A241 (1957) , 376.
8 Kroener, E., Z. Phys., 151 (1958) , 504.
9 Esheby, J.D., Proc. R. Soc., A252 (1959) , 561.
10 MacMillan, W.D., The Theory of the Potential, Dover Publ., New York, 1958, p. 62.
11 北京钢铁研究院金属物理室,工程断裂力学,上册,国防工业出版社,1977,p.53,54.
12 Waymen, C.M., Advances in Materials Research, Vol. 3, Interscience New York, 1968, p. 147.
13 Davies, K.G.; Magee, C.L., Metall. Trans., 3 (1972) , 307.
14 Smith, Y.E.; Diesbury, D.E., Met. Progr, 115 (1979) , № 5, 68.
No related articles found!