Please wait a minute...
金属学报  1994, Vol. 30 Issue (23): 481-490    
  论文 本期目录 | 过刊浏览 |
电渣重熔体系内熔渣流场的数学模拟
魏季和;任永莉
上海大学;西安冶金建筑学院
MATHEMATICAL MODELLING OF SLAG FLOW FIELD IN ESR SYSTEM
WEI Jihe(WEI Chiho)(Shanghai University);REN Yongli(Xi'an Institute of Metallurgy and Construction Engineering)(Manuscript received 19 February; 1994)
引用本文:

魏季和;任永莉. 电渣重熔体系内熔渣流场的数学模拟[J]. 金属学报, 1994, 30(23): 481-490.
, . MATHEMATICAL MODELLING OF SLAG FLOW FIELD IN ESR SYSTEM[J]. Acta Metall Sin, 1994, 30(23): 481-490.

全文: PDF(264 KB)  
摘要: 建立了电渣重熔体系内电磁力作用下熔体流场的数学模型,并将其应用于在结晶器直径为200mm的实验室装置上以CaF_2+30mass%Al_2O_3+20mass%CaO系熔渣进行的低碳低合金钢重熔过程(电极直径76mm,3000A(rms))。合理选取模型参数值,计算了电磁力作用下体系内渣池的流场。结果表明,在电磁力作用下,渣池内形成沿结晶器壁向上,经熔渣自由表面和电极端部锥面又沿体系对称轴向下流动的两个旋涡,最大流速区约位于渣池内体系对称轴中部,涡心基本上位于半渣池中央略偏左、右下方的区域。对一些假想工况下的情形作了模拟,考察了重熔电流、填充比和电极端部形状对重熔体系内渣池流场的影响。与一些物理模拟结果作了比较。
关键词 电渣重熔渣池流场电磁驱动分量数学模拟    
Abstract:On the basis of the mathematical model of the magnetic field proposed by the authors, a mathematical model for the electromagnetically driven component of the flow field of the melts in ESR system has been developed and applied to the laboratory unit with a mould of 200 mm in diameter. For the practical remelting of a low carbon low alloy steel used an electrode of 76 mm in diameter with 3000 A(rms) current and CaF_2+30mass% Al_2O_3+20mass% CaO slag system, the flow field in the slag bath has been computed using the parameters selected reasonablly. The results indicate that two vontexes are generated in the bath, which circulatively move upwards along the inside wall of mould and through the slag/gas interface and the conical electrode tip, then downwards along the symmetry axis of the system. The maximum velocity of the moving slag reaches approximately at the middle part of the axis in the bath. Also, modelling and simulating under the assumed operative con ditions have been carried out in order to consider the influence of the remelting current and fill ratio, as well as the shape of electrode tip. (Correspondent: WEI Jihe, professor, Department of Materials Science and Engineeing, Shanghai University,Shanghai 200072 )
Key words electroslag remelting    flow field of slag bath    electromagnetically driven component    mathematical modelling
    
基金资助:国家自然科学基金
1MitchellA,SzekelyJ,ElliottJF.ElectroslagRefining.London:ISI,1973:32PeoverME.JInstMet,1972;100:973DilawariAH,SzekelyJ.MetallTrans,1977;88:2274DillawariAH,SzekelyJ.MetallTrans,1978;9B:775ChoudharyM,SzekelyJ.MetallTrans,1980;11B:4396ChoudharyM,SzekelyJ.IronmakingSteelmaking,1981;8(5):2257魏季和,任永莉.电渣重熔体系内磁场的数学模拟,第九届全国冶金过程物理化学学术年会论文集1994.11,广州8ChoudharyM,SzekelyJ,MedovarBI,EmelyanenkoYuG.MetallTrans,1982;13B:359钱壬章,俞昌铭,林文贵.传热分析与计算.北京:高等教育出版社,1984:1010魏季和,MitchellA.金属学报,1984;20:B28011魏季和,MitchellA.金属学报,1984;20:B26112陈家祥编著.常用炼钢图表数据手册.北京:冶金工业出版社,198213GeigerGH,PoirierDR著,俞景禄、魏季和译.冶金中的传热传质现象.北京:冶金工业出版社,1981:2414GosmanAD,PunWM,RunchalAK,SpaldingDB,WolfsheteinM.MassTransferinRecirculatingFlow.LondonandNewYork:AcademicPress,196915CampballJ.JMet,1970;20:2
[1] 侯自兵,曹江海,常毅,王伟,陈晗. 基于分形维数的模具钢电渣重熔铸坯碳偏析形貌特征研究[J]. 金属学报, 2017, 53(7): 769-777.
[2] 李青,王资兴,谢树元. 电渣重熔全过程的数学模型开发及过程模拟研究[J]. 金属学报, 2017, 53(4): 494-504.
[3] 倪自飞 孙扬善 薛烽 白晶. 原位TiC颗粒弥散强化304不锈钢的制备及组织性能研究[J]. 金属学报, 2010, 46(8): 935-940.
[4] 王芳 李宝宽 . 电渣重熔过程中的电磁场和Joule热分析[J]. 金属学报, 2010, 46(7): 794-799.
[5] 李永德; 杨振国; 李守新; 柳洋波; 陈树铭 . GCr15轴承钢超高周疲劳性能与夹杂物相关性[J]. 金属学报, 2008, 44(8): 968-972 .
[6] 吴钱林; 孙扬善; 薛烽; 周健 . 电渣重熔对TiC强化2Cr13不锈钢力学性能和断口的影响[J]. 金属学报, 2008, 44(6): 745-750 .
[7] 尹小东; 黄宗泽; 顾文兵 . 真空脱碳过程的数学模拟研究[J]. 金属学报, 2005, 41(8): 876-880 .
[8] 储少军;刘海洪;张合义. 灰铸铁电渣重熔过程石墨球化现象的研究[J]. 金属学报, 1998, 34(9): 971-976.
[9] 魏季和;任永莉. 电渣重熔体系内磁场的数学模拟[J]. 金属学报, 1995, 31(14): 51-60.
[10] 魏季和;刘宗远. 电渣重熔用CaF_2+Al_2O_3和CaF_2+Al_2O_3+CaO系熔渣传氧的研究[J]. 金属学报, 1994, 30(20): 350-360.
[11] 曲英;杨健;徐保美. 熔渣下金属熔池流动现象的数学模拟[J]. 金属学报, 1990, 26(3): 85-91.
[12] 陈崇禧;高荣富. 半有衬新型电渣重熔研究[J]. 金属学报, 1988, 24(3): 221-228.