Please wait a minute...
金属学报  2008, Vol. 44 Issue (7): 867-870     
  论文 本期目录 | 过刊浏览 |
热解温度对多晶铁纤维的静磁和微波电磁性能的影响
童国秀;官建国;樊希安;王维;李维
武汉理工大学材料复合新技术国家重点实验室
INFLUENCES OF PYROLYSIS TEMPERATURE ON STATIC MAGNETIC AND MICROWAVE ELECTROMAGNETIC PROPERTIES OF POLYCRYSTALLINE IRON FIBERS
TONG Guo-Xing
武汉理工大学国家重点实验室
引用本文:

童国秀; 官建国; 樊希安; 王维; 李维 . 热解温度对多晶铁纤维的静磁和微波电磁性能的影响[J]. 金属学报, 2008, 44(7): 867-870 .
, , , , . INFLUENCES OF PYROLYSIS TEMPERATURE ON STATIC MAGNETIC AND MICROWAVE ELECTROMAGNETIC PROPERTIES OF POLYCRYSTALLINE IRON FIBERS[J]. Acta Metall Sin, 2008, 44(7): 867-870 .

全文: PDF(566 KB)  
摘要: 在气流的诱导作用下, 仅通过控制五羰基铁的热解温度, 可获得不同晶粒尺寸及化学 组成的多晶铁纤维. 研究了热解温度对多晶铁纤维的静磁和微波电磁性能的影响规律.结果表明, 由于多晶铁纤维的结构和组成随热解温度呈规律性变化, 导致多晶铁纤维的静磁和微波电磁性能对热解温度有强烈的依赖性. 500 ℃获得的多晶铁纤维晶粒尺寸为21.6 nm,碳含量为8.26%, 此时软磁性能最差,复介电常数和复磁导率最低;而在700 ℃获得的多晶铁纤维的晶粒尺寸为61.1 nm,碳含量为3.88%, 此时具有最佳的软磁性能和最高的介电损耗及磁损耗. 这表明通过调节热解温度控制产物的结构和组成, 可以获得微波电磁性能优良的多晶铁纤维
关键词 多晶铁纤维热解温度静磁性能     
Abstract:Using the high pure argon gas as carrier gas, the polycrystalline iron fibers with tunable morphology, crystal size and composition were prepared just by controlling pyrolysis temperature of Fe(CO)5. The effects of pyrolysis temperature on the static magnetic properties and microwave electromagnetic properties were studied. The results show that the static magnetic properties and microwave electromagnetic properties of polycrystalline iron fibers are strongly dependent on the pyrolysis temperature owing to the crystal sizes and compositions of polycrystalline iron fibers regularly changing with pyrolysis temperature. the polycrystalline iron fibers obtained at 500℃, with 21.6 nm crystal size and 8.26% C content have the worst soft magnetic properties and the lowest permittivity loss and permeability, however, the polycrystalline iron fibers obtained at 700℃, with 61.1 nm crystal size and 3.88% C content have the best soft magnetic properties and the biggest permittivity loss and permeability loss. The polycrystalline iron fibers with good microwave electromagnetic properties could be obtained by adjusting pyrolysis temperature to control the structures and compositions of the polycrystalline iron fibers.
Key words
收稿日期: 2007-09-29     
ZTFLH:  O641  
[1]Xi Z P,Zhou L,Li J,Liao J C,Wu L J,Li Y L,Li J P, Zhang Y R.Rare Met Mater Eng,1998;27:317 (奚正平,周廉,李建,廖际常,毋录建,李亚录,李建平,张燕荣.稀有金属材料与工程,1998;27:317)
[2]Wu M Z,Zhao Z S,He H H,Yao X.J Magn Magn Mater, 2000;217:89
[3]Zhang X C,He H H.J Huazhon9 Univ Sci Technol,2001; 29(2):14 (张秀成,何华辉.华中理工大学学报,2001;29(2):14)
[4]Nie Y,He H H,Zhao Z S,Gong R Z,Yu H B.J Magn Magn Mater,2006;306:125
[5]Li X C,Gong R Z,Nie Y,Zhao Z S,He H H.Mater Chem Phys,2005;94:408
[6]Yang Y,Zhang B S,Xu W D,Shi Y B,Jiang Z S,Zhou N S,Gu B X,Lu H X.J Magn Magn Mater,2003;256:129
[7]Tong G X,Guan J G,Fan X A,Wang W,Song F H.Chin J Inorg Chem,2008;24:270 (童国秀,官建国,樊希安,王维,宋发辉.无机化学学报,2008;24:270)
[8]Tong G X,Wang W,Guan J G,Zhang Q J.J Inorg Mater, 2006;21:1461 (童国秀,王维,官建国,张清杰.无机材料学报,2006;21:1461)
[9]Li Z W,Chen L,Ong C K,Yang Z.J Mater Sci,2005;40: 719
[10]Philippe T,Olivier A.IEEE Trans Magn,1999;35:3469
[11]Li G D.The Contemporary Magnetics.Hefei:University of Science and Technology of China Press,1999:141 (李国栋.当代磁学.合肥:中国科学技术大学出版社,1999:141)
[12]Zhou Z Q.Ferrite Magnetic Materials.Beijing:Science Press,1981:162 (周志刚.铁氧体磁性材料.北京:科学出版社,1981:162)
[13]Liao S B.Iron Magnetics.Beijing:Science Press,1988: 76 (廖绍彬.铁磁学.北京:科学出版社,1988:76)
[1] 金会心; 王华 . 褐煤热解煤气的性质[J]. 金属学报, 2000, 36(4): 441-444 .