Please wait a minute...
金属学报  2005, Vol. 41 Issue (3): 260-266     
  论文 本期目录 | 过刊浏览 |
Ti-(44—50)Al合金定向包晶凝固过程中的组织演化
刘畅;苏彦庆;李新中;郭景杰;贾均;傅恒志
哈尔滨工业大学材料科学与工程学院;哈尔滨150001
Microstructure evolution of Ti-(44-50)Al alloys during directional peritectic solidification
LIU Chang; SU Yanqing; LI Xinzhong; GUO Jingjie; JIA Jun; FU Hengzhi
School of Materials Science and Engineering; Harbin Institute of Technology; Harbin 150001
引用本文:

刘畅; 苏彦庆; 李新中; 郭景杰; 贾均; 傅恒志 . Ti-(44—50)Al合金定向包晶凝固过程中的组织演化[J]. 金属学报, 2005, 41(3): 260-266 .
, , , , , . Microstructure evolution of Ti-(44-50)Al alloys during directional peritectic solidification[J]. Acta Metall Sin, 2005, 41(3): 260-266 .

全文: PDF(279 KB)  
摘要: 利用TiAl二元系的热力学模型,计算了Ti-(44—50)Al(原子分数,%)合金包晶反应附近的相图,确定了初生相β和包晶相α的固、液相线,得到了界面响应函数所需的部分参数. 利用这些参数及单相合金凝固界面响应函数模型,计算了初生相β和包晶相α的界面温度与生长条件变化的关系;结合最高界面生长温度判据,分析了Ti-(44—50)Al合金凝固过程中的相选择和组织演化,并确定了Ti-Al合金稳态凝固时以成分和G/v为框架的相选择图.
关键词 Ti-Al合金包晶凝固 界面响应函数    
Abstract:Using the thermodynamic model of TiAl binary system, part of phase diagram of Ti-(44-50)Al around the peritectic reaction was calculated and the solidus and liquidus of primary phase β and peritectic phase α were determined and the parameters used for interface response function were obtained. The interface temperatures of primary phase β and peritectic phase α were calculated for different growth conditions. According to the criterion of the maximum growth temperature, the phase selection and microstructure evolution of Ti-(44-50)Al were theoretically studied and a microstructure-selection map of TiAl stable state solidification as a function of the melt composition and the G/v ratio was constructed.
Key wordsTi-Al alloy    peritectic solidification    interface response function (IRF)
收稿日期: 2004-03-12     
ZTFLH:  TG132.32  
[1] Kerr H W, Kurz W. Int Mater Rev, 1996; 41: 129
[2] Hunziker O, Vandyoussefi M, Kurz W. Acta Mater, 1998; 46: 6325
[3] Umeda T, Ckane T, Kurz W. Acta Mater, 1996; 44: 4209
[4] Fu H Z, Su Y Q, Guo J J, Xu D M. Acta Metall Sin, 2002; 38: 112 (傅恒志,苏彦庆,郭景杰,徐达鸣.金属学报,2002;38:1127)
[5] Fu H Z, Su Y Q, Guo J J, Liu L, Xu D M, Li J S. Chin J Nonferrous Met, 2003; 13: 797 (傅恒志,郭景杰,苏彦庆,刘林,徐达鸣,李金山.中国有 色金属学报,2003;13:797)
[6] Yamaguchi M, Johnson D R, Lee H N, Inui H. Inter-metallics, 2000; 8: 511
[7] Zhang F, Chen S L, Chang Y A. In: Kim Y W, Wagner R, Yamaguch M, eds., Gamma Titanium Aluminides. Warrendale, Pa: TMS, 1995: 131
[8] Liu Y C. PhD Dissertation, Northwestern Polytechnical University, Xi'an, 2000 (刘永长.西北工业大学博士学位论文,西安,2000)
[9] Kattmer U R, Lin J C, Chang Y A. Metall Trans, 1992; 23A: 2081
[10] Kurz W, Gilgien P. Mater Sci Eng, 1994; 178A: 171
[11] Kurz.W, Giovanola B, Trivedi R. Acta Metall, 1986; 34: 823
[12] Gaumann M, Trivedi R, Kurz.W. Mater Sci Eng, 1997; A226-228: 763
[13] Kurz.W. Trivedi R. Metall Trans, 1996; 27A: 625
[14] Huang W D, Lin X, Wang M, Shen S J, Su Y P, Liu Z X. Sci Chin, 2002; 32E: 577 (黄卫东,林鑫,王猛,沈淑娟,苏云鹏,刘振侠.中国科 学,2002;32E:577)
[15] Kim M C, Oh M H, Lee J H. Mater Sci Eng, 1997; A 239-240: 570
[16] Johnson D R, Masuda Y, Inui H. Mater Sci Eng, 1997; A239-240: 577
[1] 李新中 孙涛 于彩霞 苏彦庆 曹勇智 郭景杰 傅恒志. 定向凝固Ti-(44~54)at%Al包晶合金相选择[J]. 金属学报, 2009, 45(12): 1479-1486.