Please wait a minute...
金属学报  2019, Vol. 55 Issue (3): 299-307    DOI: 10.11900/0412.1961.2018.00109
  本期目录 | 过刊浏览 |
哈尔滨工业大学先进焊接与连接国家重点实验室 哈尔滨 150001
Discharge Characteristics of Novel Dual-Pulse HiPIMS and Deposition of CrN Films with High Deposition Rate
Houpu WU,Xiubo TIAN(),Xinyu ZHANG,Chunzhi GONG
State Key Laboratory of Advanced Welding Production and Technology, Harbin Institute of Technology, Harbin 150001, China
全文: PDF(10389 KB)   HTML

提出了一种新型的高功率脉冲磁控溅射(HiPIMS)技术,即放电由脉宽短、电压高的引燃脉冲和脉宽长、电压低的工作脉冲2部分组成的双脉冲高功率脉冲磁控溅射技术,目的是解决传统高功率脉冲磁控溅射沉积速率低的问题。研究了引燃脉冲电压及传统高功率脉冲磁控溅射条件对Cr靶在Ar气气氛下的放电特性的影响,并制备CrN薄膜。结果表明:随着引燃脉冲电压的施加,双脉冲高功率脉冲磁控溅射Cr靶放电瞬间建立,并获得较高的峰值电流,而传统HiPIMS模式的输出是渐渐爬升的三角波电流;与传统高功率脉冲磁控溅射相比,单位功率下双脉冲高功率脉冲磁控溅射具有更高的基体电流积分以及更多的Ar+和Cr0数量;引燃脉冲电压为590 V时,双脉冲高功率脉冲磁控溅射单位功率下CrN薄膜沉积速率为2.52 μm/(h·kW),比传统高功率脉冲磁控溅射提高近3倍。

关键词 双脉冲高功率脉冲磁控溅射引燃脉冲放电特性CrN薄膜    

High power impulse magnetron sputtering (HiPIMS) is of great significance for improving the quality of sputtered films because of its high ionization degree of sputtered particles and high ion fluxes. Therefore, it has been widely studied by researchers. However, the conventional HiPIMS shows a significantly low deposition rate, which greatly limits the industrial applications of HiPIMS. In this work, a novel high power impulse magnetron sputtering is proposed to enhance the low deposition rate encountered in conventional HiPIMS. The novel technology is based on dual pulses discharge mode, in which a pulsed high voltage with short duration is utilized to high-current discharge and produce initial high density plasma and a subsequent work-pulse of low voltage with long duration is employed to sustain the high-current discharge. Consequently the re-adsorption effect by magnetron target may be weakened. The influence of ignition pulse voltage discharge characteristics of Cr target and microstructure of CrN films were investigated. The discharge characteristics of Cr target and the structure characteristics of CrN coatings were characterized by digital oscilloscope, spectrometer, focused ion beam/electron beam dual-beam microscope and X-ray diffraction. The results show that the discharge of Cr target is ignited rapidly and the discharge current is substantially large with the ignition voltage applied to the target. In contrast, the pulse current gradually rises for the conventional HiPIMS meaning a weak discharge. Compared with the conventional HiPIMS, the dual-pulse HiPIMS produce a higher substrate current integral value and more amount of Ar+ and Cr0 with the same input power. With ignition pulse voltage of 590 V, the deposition rate at unit power for CrN coating is 2.52 μm/(h·kW) for dual-pulse HiPIMS, which is nearly three times higher than that of conventional HiPIMS. With the increase of the ignition pulse voltage, the CrN films prepared by dual-pulse HiPIMS possess denser structure with smaller grain size.

Key wordsdual-pulse high power impulse magnetron sputtering    ignition pulse    discharge characteristics    CrN coating
收稿日期: 2018-03-23      出版日期: 2018-11-07
ZTFLH:  TB43  
通讯作者: 田修波     E-mail:
Corresponding author: Xiubo TIAN     E-mail:
作者简介: 吴厚朴,男,1995年生,博士生


吴厚朴,田修波,张新宇,巩春志. 双脉冲HiPIMS放电特性及CrN薄膜高速率沉积[J]. 金属学报, 2019, 55(3): 299-307.
Houpu WU,Xiubo TIAN,Xinyu ZHANG,Chunzhi GONG. Discharge Characteristics of Novel Dual-Pulse HiPIMS and Deposition of CrN Films with High Deposition Rate. Acta Metall Sin, 2019, 55(3): 299-307.

链接本文:      或

图1  双脉冲高功率脉冲磁控溅射(HiPIMS)沉积系统示意图
图2  双脉冲HiPIMS不同引燃脉冲电压及传统HiPIMS条件下靶电压和靶电流波形图
图3  双脉冲HiPIMS引燃脉冲电压及HiPIMS条件对靶材平均功率的影响
图4  双脉冲HiPIMS不同引燃脉冲电压及HiPIMS条件下基体电流波形图
图5  双脉冲HiPIMS引燃脉冲电压及HiPIMS条件对单位功率基体电流积分的影响
图6  传统HiPIMS及双脉冲HiPIMS放电机理示意图
图7  双脉冲HiPIMS引燃脉冲电压及HiPIMS条件对Ar+和Cr0的单位功率特征光谱强度的影响
图8  双脉冲HiPIMS不同引燃脉冲电压及HiPIMS条件下CrN薄膜表面与截面形貌的SEM像
图9  双脉冲HiPIMS不同引燃脉冲电压下CrN薄膜的XRD谱
图10  双脉冲HiPIMS引燃脉冲电压对CrN薄膜晶粒尺寸的影响
图11  双脉冲HiPIMS引燃脉冲电压及HiPIMS条件对CrN薄膜单位功率沉积速率的影响
[1] Li J X, Zhang H Q, Fan A L, et al. Tribological properties characterization of Ti/Cu/N thin films prepared by DC magnetron sputtering on titanium alloy [J]. Surf. Coat. Technol., 2016, 294: 30
[2] Liu G, Yang Y Q, Jin N, et al. The structural characterizations of Ti-17 alloy films prepared by magnetron sputtering [J]. Appl. Surf. Sci., 2018, 427: 774
[3] Chen L, Chang K K, Du Y, et al. A comparative research on magnetron sputtering and arc evaporation deposition of Ti-Al-N coatings [J]. Thin Solid Films, 2011, 519: 3762
[4] Sarakinos K, Alami J, Konstantinidis S. High power pulsed magnetron sputtering: A review on scientific and engineering state of the art [J]. Surf. Coat. Technol., 2010, 204: 1661
[5] Odivanova A N, Podkovyrov V G, Sochugov N S, et al. Study of the plasma parameters in a high-current pulsed magnetron sputtering system [J]. Plasma Phys. Rep., 2011, 37: 239
[6] Stranak V, Cada M, Hubicka Z, et al. Time-resolved investigation of dual high power impulse magnetron sputtering with closed magnetic field during deposition of Ti-Cu thin films [J]. J. Appl. Phys., 2010, 108: 043305
[7] Kouznetsov V, Macák K, Schneider J M, et al. A novel pulsed magnetron sputter technique utilizing very high target power densities [J]. Surf. Coat. Technol., 1999, 122: 290
[8] Lin J L, Moore J J, Sproul W D, et al. The structure and properties of chromium nitride coatings deposited using dc, pulsed dc and modulated pulse power magnetron sputtering [J]. Surf. Coat. Technol., 2010, 204: 2230
[9] Aiempanakit M, Kubart T, Larsson P, et al. Hysteresis and process stability in reactive high power impulse magnetron sputtering of metal oxides [J]. Thin Solid Films, 2011, 519: 7779
[10] Li C W, Tian X B. Novel high power impulse magnetron sputtering enhanced by an auxiliary electrical field [J]. Rev. Sci. Instrum., 2016, 87: 083507
[11] Anders A. Deposition rates of high power impulse magnetron sputtering: Physics and economics [J].J. Vac. Sci. Technol., 2010, 28A: 783
[12] Brenning N, Huo C, Lundin D, et al. Understanding deposition rate loss in high power impulse magnetron sputtering: I. Ionization-driven electric fields [J]. Plasma Sources Sci. Technol., 2012, 21: 025005
[13] Paulitsch J, Schenkel M, Schintlmeister A, et al. Low friction CrN/TiN multilayer coatings prepared by a hybrid high power impulse magnetron sputtering/DC magnetron sputtering deposition technique [J]. Thin Solid Films, 2010, 518: 5553
[14] Luo Q, Yang S, Cooke K E. Hybrid HIPIMS and DC magnetron sputtering deposition of TiN coatings: Deposition rate, structure and tribological properties [J]. Surf. Coat. Technol., 2013, 236: 13
[15] Stranak V, Drache S, Bogdanowicz R, et al. Effect of mid-frequency discharge assistance on dual-high power impulse magnetron sputtering [J]. Surf. Coat. Technol., 2012, 206: 2801
[16] Lu C Y, Diyatmika W, Lou B S, et al. Influences of target poisoning on the mechanical properties of TiCrBN thin films grown by a superimposed high power impulse and medium-frequency magnetron sputtering [J]. Surf. Coat. Technol., 2017, 332: 86
[17] Wu Z Z, Tian X B, Pan F, et al. High power pulsed magnetron sputtering discharge behavior of various target materials [J]. Acta Metall. Sin., 2014, 50: 1279
doi: 10.11900/0412.1961.2014.00160
[17] 吴忠振, 田修波, 潘 锋等. 不同靶材料的高功率脉冲磁控溅射放电行为 [J]. 金属学报, 2014, 50: 1279
doi: 10.11900/0412.1961.2014.00160
[18] Anders A, Andersson J, Ehiasarian A. High power impulse magnetron sputtering: Current-voltage-time characteristics indicate the onset of sustained self-sputtering [J]. J. Appl. Phys., 2007, 102: 113303
[19] Wu Z Z, Tian X B, Li C W, et al. Phasic discharge characteristics in high power pulsed magnetron sputtering [J]. Acta Phys. Sin., 2014, 63: 175201
doi: 10.7498/aps.63.175201
[19] 吴忠振, 田修波, 李春伟等. 高功率脉冲磁控溅射的阶段性放电特征 [J]. 物理学报, 2014, 63: 175201
doi: 10.7498/aps.63.175201
[20] Li X C, Ke P L, Liu X C, et al. Discharge characteristics of Ti and film preparation using hybrid high power impulse magnetron sputtering [J]. Acta Metall. Sin., 2014, 50: 879
doi: 10.3724/sp.j.1037.2013.00744
[20] 李小婵, 柯培玲, 刘新才等. 复合高功率脉冲磁控溅射Ti的放电特性及薄膜制备 [J]. 金属学报, 2014, 50: 879
doi: 10.3724/sp.j.1037.2013.00744
[21] Lin J L, Moore J J, Sproul W D, et al. Modulated pulse power sputtered chromium coatings [J]. Thin Solid Films, 2009, 518: 1566
[22] Konstantinidis S, Dauchot J P, Ganciu M, et al. Transport of ionized metal atoms in high-power pulsed magnetron discharges assisted by inductively coupled plasma [J]. Appl. Phys. Lett., 2006, 88: 021501
[23] Tiron V, Velicu I L, Mihăilă I, et al. Deposition rate enhancement in HiPIMS through the control of magnetic field and pulse configuration [J]. Surf. Coat. Technol., 2018, 337: 484
[24] Konstantinidis S, Dauchot J P, Ganciu M, et al. Influence of pulse duration on the plasma characteristics in high-power pulsed magnetron discharges [J]. J. Appl. Phys., 2006, 99: 013307
[25] Li C W, Tian X B, Gong C Z, et al. The improvement of high power impulse magnetron sputtering performance by an external unbalanced magnetic field [J]. Vacuum, 2016, 133: 98
[26] Oliveira J C, Fernandes F, Serra R, et al. On the role of the energetic species in TiN thin film growth by reactive deep oscillation magnetron sputtering in Ar/N2 [J]. Thin Solid Films, 2018, 645: 253
[27] Guimaraes M C R, de Castilho B C N M, de Souza Nossa T, et al. On the effect of substrate oscillation on CrN coatings deposited by HiPIMS and dcMS [J]. Surf. Coat. Technol., 2018, 340: 112
[28] Wang Z Y, Xu S, Zhang D, et al. Influence of N2 flow rate on structures and mechanical properties of TiSiN coatings prepared by HIPIMS method [J]. Acta Metall. Sin., 2014, 50: 540
doi: 10.3724/sp.j.1037.2013.00698
[28] 王振玉, 徐 胜, 张 栋等. N2流量对HIPIMS制备TiSiN涂层结构和力学性能的影响 [J]. 金属学报, 2014, 50: 540
doi: 10.3724/sp.j.1037.2013.00698
[29] Ferreira F, Serra R, Cavaleiro A, et al. Additional control of bombardment by deep oscillation magnetron sputtering: Effect on the microstructure and topography of Cr thin films [J]. Thin Solid Films, 2016, 619: 250
[30] Lin J, Sproul W D, Moore J J, et al. Effect of negative substrate bias voltage on the structure and properties of CrN films deposited by modulated pulsed power (MPP) magnetron sputtering [J]. J. Phys., 2011, 44D: 425305
[31] Yang C, Jiang B L, Feng L, et al. Effect of discharge characteristics of target on ionization and deposition of deposited particles [J]. Acta Metall. Sin., 2015, 51: 1523
[31] 杨 超, 蒋百灵, 冯 林等. 靶面放电特性对沉积粒子离化率及沉积行为的影响 [J]. 金属学报, 2015, 51: 1523
[32] Kong Y, Ma Y H, Li Y J, et al. Microstructure and surface properties of TiCN films using cathodic arc deposition enhanced by additional electric field [J]. Rare Met. Mater. Eng., 2017, 46: 1026
[32] 孔 营, 马英鹤, 李永健等. 电场增强的阴极弧放电TiCN薄膜结构及性能研究 [J]. 稀有金属材料与工程, 2017, 46: 1026
[33] Burton A W, Ong K, Rea T, et al. On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems [J]. Microporous Mesoporous Mater., 2009, 117: 75
[34] Ibrahim K, Rahman M M, Zhao X L, et al. Annealing effects on microstructural, optical, and mechanical properties of sputtered CrN thin film coatings: Experimental studies and finite element modeling [J]. J. Alloys Compd., 2018, 750: 451
[35] Elmkhah H, Zhang T F, Abdollah-Zadeh A, et al. Surface characteristics for the Ti-Al-N coatings deposited by high power impulse magnetron sputtering technique at the different bias voltages [J]. J. Alloys Compd., 2016, 688: 820
[36] Ganesan R, Akhavan B, Dong X, et al. External magnetic field increases both plasma generation and deposition rate in HiPIMS [J]. Surf. Coat. Technol., 2018, 352: 671
[1] 陈育秋, 祖亚培, 宫骏, 孙超, 王晨. Al薄膜对玻璃纤维增强树脂基复合材料电磁性能的影响[J]. 金属学报, 2017, 53(11): 1511-1520.
[2] 肖金泉 郎文昌 赵彦辉 宫骏 孙超 闻立时. 轴对称磁场对电弧离子镀TiN薄膜结构及摩擦性能的影响[J]. 金属学报, 2011, 47(5): 566-572.
[3] 杨义勇 彭志坚 付志强 邬苏东 陈新春 王成彪. 多组分缓冲层W梯度掺杂DLC复合薄膜研究[J]. 金属学报, 2010, 46(1): 34-40.
[4] 聂朝胤 Akiro Ando 卢春灿 贾晓芳. 电弧离子镀法制备高硬度Cr-Si-C-N薄膜[J]. 金属学报, 2009, 45(11): 1320-1324.
[5] 李红凯 刘琪 林国强 董闯. 脉冲偏压电弧离子镀C--N--Cr薄膜的成分、结构与性能[J]. 金属学报, 2009, 45(5): 610-614.
[6] 刘志敏; 杜昊; 石南林; 闻立时 . 铝膜电导率尺寸效应对其微波性能的影响[J]. 金属学报, 2008, 44(9): 1099-1104 .
[7] 李红凯; 林国强; 董闯; 闻立时 . 氮含量对脉冲偏压电弧离子镀CNx薄膜结构与性能的影响[J]. 金属学报, 2008, 44(8): 917-921 .
[8] 刘明霞; 张建民; 徐可为 . Ni/Al纳米多层膜的界面扩散与电阻率[J]. 金属学报, 2008, 44(3): 357-360 .
[9] 黄辉; 朱明伟; 宫骏; 孙超; 姜辛 . 溶剂、溶胶稳定剂和热处理对溶胶--凝胶法制备的ZnO薄膜微观结构的影响[J]. 金属学报, 2007, 43(10): 1043-1047 .
[10] 杨吉军; 徐可为 . 磁控溅射Cu膜表面演化的多尺度行为[J]. 金属学报, 2007, 43(9): 903-906 .
[11] 刘明霞; 马飞; 黄友兰; 黄平; 余花娃; 张建民; 徐可为 . 多层膜晶界和膜界间竞比变形及其对硬度测量的影响[J]. 金属学报, 2007, 43(6): 603-606 .
[12] 张敏; 林国强; 董闯; 闻立时 . 脉冲偏压电弧离子镀室温沉积非晶TiO2薄膜[J]. 金属学报, 2007, 43(5): 509-514 .
[13] 杨吉军; 马飞; 徐可为 . 多晶柱状Cu膜的表面粗化与织构[J]. 金属学报, 2006, 42(12): 1233-1237 .
[14] 程东; 严志军; 严立 . Cu/Ni多层膜中交变应力场对可动位错的制约[J]. 金属学报, 2006, 42(2): 118-122 .
[15] 马大衍; 马胜利; 徐可为; S.Veprek . 残余氧对TiN+Si3N4纳米复合薄膜硬度的影响[J]. 金属学报, 2004, 40(10): 1037-1040 .