Please wait a minute...
金属学报  2016, Vol. 52 Issue (10): 1199-1206    DOI: 10.11900/0412.1961.2016.00393
  论文 本期目录 | 过刊浏览 |
高效愈合钢锭内部缺陷的锻造工艺设计*
李殿中1,马璇1,2,3,徐斌1,4(),孙明月1,4
1) 中国科学院金属研究所沈阳材料科学国家(联合)实验室, 沈阳 110016
2) 沈阳师范大学物理科学与技术学院, 沈阳 110034
3) 大连理工大学材料科学与工程学院, 大连 116085
4) 中国科学院金属研究所核用材料与安全评价重点实验室, 沈阳 110016
DESIGN OF FORGING METHODS OF HEALING DEFECTS IN INGOTS EFFECTIVELY
Dianzhong LI1,Xuan MA1,2,3,Bin XU1,4(),Mingyue SUN1,4
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 College of Physical Science and Technology, Shenyang Normal University, Shenyang 110034, China
3 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116085, China
4 Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(6552 KB)   HTML
  
摘要: 

总结了宽砧径向压实工艺(WRF法), 该工艺可使应变集中于钢锭中心区域, 并满足孔洞闭合所需的最佳高径比条件, 因此可高效愈合钢锭的中心缩孔、疏松. 基于该方法, 针对压机压力较小的情况, 提出了单向大变形压实法. 该方法通过两个道次的单方向变形将坯料锻造成扁方状, 可以使用小压力实现较大钢锭内缺陷的有效愈合. 基于界面焊合原理, 针对管板类锻件探伤合格率较低的问题, 提出了管板类锻件的锻间保温锻造法. 利用该方法成功进行了含缺陷管板的修复实验. 以上各锻造工艺均经过工业实验验证, 证明其可以顺利愈合锻件内的孔洞型缺陷, 提高锻件合格率.

关键词 孔洞闭合宽砧径向压实法单向大变形压实法锻间保温锻造法    
Abstract

Large forgings are the fundamental parts of many kinds of key equipment, and large ingots are the basis of large forgings. There are severe metallurgical defects in large ingots, such as porosities, shrinkage cavities and gas cavities. The continuity of material is damaged by the defects, which must be eliminated during forging process. Using FEM simulation, it is found that void shape is the most important parameter affecting void closing during hot forging. Height-diameter ratio of the void is defined to describe the effect of void shape. The simulation results show that the larger height-diameter ratio of the void, the harder it is for the void to close. Based on these results, wide anvil radial forging (WRF) method is proposed. WRF method can concentrate the strain on the center of the ingot; make the height-diameter ratio of the voids smallest and heal shrinkage cavities effectively. Another one direction heavy forging method is proposed to be used on smaller forging machines. Using this method, the billet is forged along the same direction for two passes. This method can heal defects effectively with small pressure. Based on interface healing rules, temperature dwelling forging method for forging tube plates are proposed. A tube plate with defects is repaired using this method. These forging methods have been used on industrial experiments, and have been proved to be able to heal the defects in the billets and increase qualified rate of the forgings.

Key wordsvoid closure    wide anvil radial forging    one direction heavy forging    temperature dwelling forging
收稿日期: 2016-09-02      出版日期: 2016-09-20
:     
基金资助:* 国家自然科学基金-辽宁联合基金项目U1508215, 国家重点研发计划项目2016YFB0300401及辽宁百千万人才工程项目【2015】 12资助

引用本文:

李殿中, 马璇, 徐斌, 孙明月. 高效愈合钢锭内部缺陷的锻造工艺设计* [J]. 金属学报, 2016, 52(10): 1199-1206.
Dianzhong LI, Xuan MA, Bin XU, Mingyue SUN. DESIGN OF FORGING METHODS OF HEALING DEFECTS IN INGOTS EFFECTIVELY. Acta Metall Sin, 2016, 52(10): 1199-1206.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00393      或      http://www.ams.org.cn/CN/Y2016/V52/I10/1199

图1  孔洞形状对临界闭合压下率的影响[10]
图2  高径比为3的椭球形孔洞在不同压下率下的变形情况和应变场分布情况[28]
图3  宽砧径向压实法孔洞压实效果模拟[10]
图4  连铸坯横截面照片[10]
图5  连铸坯锻造过程: 锻前加热、宽砧径向压实、拔长、摔圆至最终尺寸[28]
图6  使用宽砧径向压实法锻造的连铸坯截面和截面中心区域低倍检测照片[28]
图7  长钢锭轴线处缺陷低倍检测结果
图8  长钢锭经过两道次相同方向的变形后的照片
图9  管板锻件及其缺陷区域示意图[28]
图10  管板锻造过程中布砧情况及缺陷区域示意图[28]
[1] Li S J, Sun M Y, Liu H W, Li D Z.Acta Metall Sin, 2011; 47: 946
[1] (李世键, 孙明月, 刘宏伟, 李殿中. 金属学报, 2011; 47: 946)
[2] Wang J Q, Fu P X, Liu H W, Li D Z, Li Y Y.Mater Des, 2012; 35: 446
[3] Li D Z, Chen X Q, Fu P X, Ma X P, Liu H W, Chen Y, Cao Y F, Luan Y K, Li Y Y.Nat Commun, 2014; 5: 5572
[4] Kang D T, Ye G B.Materials and Heat Treatment of Large Forgings. Beijing: Longmen Bookstore, 1998: 73
[4] (康大韬, 叶国斌. 大型锻件材料及热处理. 北京: 龙门书局, 1998: 73)
[5] Tkocz M, Kusiak J, Grosman F.Acta Metall Slovaca, 2007; 13: 221
[6] Kim P H, Chun M S, Yi J J, Moon Y H.J Mater Process Technol, 2002; 130: 516
[7] Chun M S, Van Tyne C J, Moon Y H.Steel Res Int, 2006; 77: 116
[8] Dudra S P, Im Y T.Int J Mach Tools Manufact, 1990; 30: 65
[9] Kim Y D, Cho J R, Bae W B.J Mater Process Technol, 2011; 211: 1005
[10] Xu B, Sun M Y, Li D Z.Acta Metall Sin, 2012; 48: 1194
[10] (徐斌, 孙明月, 李殿中. 金属学报, 2012; 48: 1194)
[11] Park C Y, Yang D Y.J Mater Process Technol, 1996; 57: 129
[12] Park C Y, Yang D Y.J Mater Process Technol, 1997; 72: 32
[13] Wang Z T, Liu Z, Ren M.Chin J Mech Eng, 1989; 25(3): 51
[13] (王祖唐, 刘庄, 任猛. 机械工程学报, 1989; 25(3): 51)
[14] Wang Z T, Liu Z, Ren M.Chin J Mech Eng, 1989; 25(4): 47
[14] (王祖唐, 刘庄, 任猛. 机械工程学报, 1989; 25(4): 47)
[15] Lee Y S, Lee S U, Van Tyne C J, Joo B D, Moon Y H.J Mater Process Technol, 2011; 211: 1136
[16] Kakimoto H, Arikawa T, Takahashi Y, Tanaka T, Imaida Y.J Mater Process Technol, 2010; 210: 415
[17] Banaszek G, Stefanik A.J Mater Process Technol, 2006; 177: 238
[18] Chen K, Yang Y T, Shao G J, Liu K J.Comput Mater Sci, 2012; 51: 72
[19] Zhang X X, Cui Z S, Chen W, Li Y.J Mater Process Technol, 2009; 209: 1950
[20] Tanaka M, Ono S, Tsuneno M, Iwadate T.Adv Technol Plast, 1987; 11: 1035
[21] Tanaka M, Ono S, Tsuneno M.J Jpn Soc Technol Plast, 1987; 28: 238
[21] (田中光之, 小野信市, 常野誠丸.塑性と加工, 1987; 28: 238)
[22] Ono S, Minami K, Ochiai T, Iwadate T, Nakata S I.Trans Jpn Soc Mech Eng, 1995: 2141
[22] (小野信市, 南克之, 落合朋之, 岩舘忠雄, 中田進一. 日本機械学會論文集: c編, 1995: 2141)
[23] Zhang H L, Yang J G, Sun J.Acta Metall Sin, 2002; 38: 1015
[23] (张海龙, 杨君刚, 孙军. 金属学报, 2002; 38: 1015)
[24] Wei D B, Han J T, Xie J X, Fu C G, Wang L Z, He Y X.Acta Metall Sin, 2000; 36: 622
[24] (韦东滨, 韩静涛, 谢建新, 付晨光, 王连忠, 贺毓辛. 金属学报, 2000; 36: 622)
[25] Liu L J, Cui Z S.J Plast Eng, 2010; 17(1): 1
[25] (刘丽娟, 崔振山. 塑性工程学报, 2010; 17(1): 1)
[26] Ma Q X, Zhong Y X, Cao Q X.J Tsinghua Univ (Sci Technol), 1999; 39(11): 94
[26] (马庆贤, 钟约先, 曹起骧. 清华大学学报(自然科学版), 1999; 39(11): 94)
[27] Cui Z S, Ren G S, Xu B Y, Xu C G, Liu G H.J Tsinghua Univ (Sci Technol), 2003; 43(2): 227
[27] (崔振山, 任广升, 徐秉业, 徐春国, 刘桂华. 清华大学学报(自然科学版), 2003; 43(2): 227)
[28] Xu B.PhD Dissertation, University of Chinese Academy of Sciences, Beijing, 2014
[28] (徐斌. 中国科学院大学博士学位论文, 北京, 2014)
[1] 徐斌 孙明月 李殿中. 锻造过程中钢锭内部孔洞型缺陷闭合规律研究[J]. 金属学报, 2012, 48(10): 1194-1200.