氢化物超导体临界转变温度的机器学习模型
赵晋彬, 王建韬, 何东昌, 李俊林, 孙岩, 陈星秋, 刘培涛

Machine Learning Model for Predicting the Critical Transition Temperature of Hydride Superconductors
ZHAO Jinbin, WANG Jiantao, HE Dongchang, LI Junlin, SUN Yan, CHEN Xing-Qiu, LIU Peitao
表2 针对数据集中6个Tc最高的氢化物超导材料的模型预测[43,59,60,70,89]
Table 2 Model predictions for the six hydride superconductors with the highest Tc in the dataset[43,59,60,70,89]

Material

Pressure

GPa

HDOS

Range(Mendeleev Number)Mean(CovalentRadius)

Avg_dev

(NValence)

Tc (RF)

K

Tc (Belli)[59]

K

Tc (Expt.) K
Li2MgH162500.539147.00.10319.3298.3473.0[43]
CaHfH121900.288551.62.24324.9198.3363.0[60]
CaHfH183000.418545.51.62339.0332.0345.0[60]
CaZrH123000.318551.60.49308.2192.6343.0[60]
MgH125000.722439.50.14300.5522.4340.0[70]
YH102500.418045.60.33312.5259.6326.0[89]
MAE-----47.6125.3-
RMSE-----68.4140.3-