氢化物超导体临界转变温度的机器学习模型
赵晋彬, 王建韬, 何东昌, 李俊林, 孙岩, 陈星秋, 刘培涛

Machine Learning Model for Predicting the Critical Transition Temperature of Hydride Superconductors
ZHAO Jinbin, WANG Jiantao, HE Dongchang, LI Junlin, SUN Yan, CHEN Xing-Qiu, LIU Peitao
表1 随机森林算法在sklearn库中使用的超参数(其他未明确指出的参数使用了默认值)
Table 1 Hyper-parameters used in the sklearn library for the random forest algorithm (For other parameters that are not explicitly specified, default values are used)
ParameterMeaning of parameterValue
n-estimatorsNumber of decision trees10-30
Max-depthMaximum depth of decision treesNone, 1, 2, 4
Min-samples-splitMinimum number of samples required to split internal nodes2, 4, 8
Min-samples-leafMinimum number of samples at leaf nodes1, 2, 4, 8