氢化物超导体临界转变温度的机器学习模型
赵晋彬, 王建韬, 何东昌, 李俊林, 孙岩, 陈星秋, 刘培涛

Machine Learning Model for Predicting the Critical Transition Temperature of Hydride Superconductors
ZHAO Jinbin, WANG Jiantao, HE Dongchang, LI Junlin, SUN Yan, CHEN Xing-Qiu, LIU Peitao
图3 递归筛选出的最重要的4个特征,及所获得的最精确的机器学习模型预测的Tc与真值对比
Fig.3 The most important 4 features by recursive selections (a) and Tc predicted by the most accurate machine learning model obtained vs the ground-truth values (b) ([Avg_dev(NValence)]—standard deviation of the number of valence electrons of constituent element, [Mean(CovalentRadius)]—mean covalent radius of constituent element, [Range(Mendeleev Number)]—range of the Mendeleev number of constituent element, HDOS Fraction—hydrogen fraction of the total density of states at the Fermi energy)